1. Academic Validation
  2. A small-molecule screen in C. elegans yields a new calcium channel antagonist

A small-molecule screen in C. elegans yields a new calcium channel antagonist

  • Nature. 2006 May 4;441(7089):91-5. doi: 10.1038/nature04657.
Trevor C Y Kwok 1 Nicole Ricker Regina Fraser Allen W Chan Andrew Burns Elise F Stanley Peter McCourt Sean R Cutler Peter J Roy
Affiliations

Affiliation

  • 1 Department of Medical Genetics and Microbiology, and The Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.
Abstract

Small-molecule inhibitors of protein function are powerful tools for biological analysis and can lead to the development of new drugs. However, a major bottleneck in generating useful small-molecule tools is target identification. Here we show that Caenorhabditis elegans can provide a platform for both the discovery of new bioactive compounds and target identification. We screened 14,100 small molecules for bioactivity in wild-type worms and identified 308 compounds that induce a variety of phenotypes. One compound that we named nemadipine-A induces marked defects in morphology and egg-laying. Nemadipine-A resembles a class of widely prescribed anti-hypertension drugs called the 1,4-dihydropyridines (DHPs) that antagonize the alpha1-subunit of L-type calcium channels. Through a genetic suppressor screen, we identified egl-19 as the sole candidate target of nemadipine-A, a conclusion that is supported by several additional lines of evidence. egl-19 encodes the only L-type calcium channel alpha1-subunit in the C. elegans genome. We show that nemadipine-A can also antagonize vertebrate L-type calcium channels, demonstrating that worms and vertebrates share the orthologous protein target. Conversely, FDA-approved DHPs fail to elicit robust phenotypes, making nemadipine-A a unique tool to screen for genetic interactions with this important class of drugs. Finally, we demonstrate the utility of nemadipine-A by using it to reveal redundancy among three calcium channels in the egg-laying circuit. Our study demonstrates that C. elegans enables rapid identification of new small-molecule tools and their targets.

Figures
Products