1. Academic Validation
  2. The novel Rho kinase (ROCK) inhibitor K-115: a new candidate drug for neuroprotective treatment in glaucoma

The novel Rho kinase (ROCK) inhibitor K-115: a new candidate drug for neuroprotective treatment in glaucoma

  • Invest Ophthalmol Vis Sci. 2014 Oct 2;55(11):7126-36. doi: 10.1167/iovs.13-13842.
Kotaro Yamamoto 1 Kazuichi Maruyama 1 Noriko Himori 1 Kazuko Omodaka 1 Yu Yokoyama 1 Yukihiro Shiga 1 Ryu Morin 1 Toru Nakazawa 1
Affiliations

Affiliation

  • 1 Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
Abstract

Purpose: To investigate the effect of K-115, a novel Rho kinase (ROCK) inhibitor, on retinal ganglion cell (RGC) survival in an optic nerve crush (NC) model. Additionally, to determine the details of the mechanism of K-115's neuroprotective effect in vivo and in vitro.

Methods: ROCK inhibitors, including K-115 and fasudil (1 mg/kg/d), or vehicle were administered orally to C57BL/6 mice. Retinal ganglion cell death was then induced with NC. Retinal ganglion cell survival was evaluated by counting surviving retrogradely labeled cells and measuring RGC marker expression with quantitative real-time polymerase chain reaction (qRT-PCR). Total oxidized lipid levels were assessed with a thiobarbituric acid-reactive substances (TBARS) assay. Reactive Oxygen Species (ROS) levels were assessed by co-labeling with CellROX and Fluorogold. Expression of the NADPH Oxidase (Nox) family of genes was evaluated with qRT-PCR.

Results: The survival of RGCs after NC was increased 34 ± 3% with K-115, a significantly protective effect. Moreover, a similar effect was revealed by the qRT-PCR analysis of Thy-1.2 and Brn3a, RGC markers. Levels of oxidized lipids and ROS also increased with time after NC. NC-induced oxidative stress, including oxidation of lipids and production of ROS, was significantly attenuated by K-115. Furthermore, expression of the Nox gene family, especially NOX1, which is involved in the NC-induced ROS production pathway, was dramatically reduced by K-115.

Conclusions: The results indicated that oral K-115 administration delayed RGC death. Although K-115 may be mediated through NOX1 downregulation, we found that it did not suppress ROS production directly. Our findings show that K-115 has a potential use in neuroprotective treatment for glaucoma and other neurodegenerative diseases.

Keywords

Nox; ROCK; glaucoma; neuroprotection; oxidative stress; retinal ganglion cell.

Figures
Products