1. Academic Validation
  2. Distribution analysis of epertinib in brain metastasis of HER2-positive breast cancer by imaging mass spectrometry and prospect for antitumor activity

Distribution analysis of epertinib in brain metastasis of HER2-positive breast cancer by imaging mass spectrometry and prospect for antitumor activity

  • Sci Rep. 2018 Jan 10;8(1):343. doi: 10.1038/s41598-017-18702-2.
Yukari Tanaka 1 Michinari Hirata 2 Satomi Shinonome 2 Mikinori Torii 3 Ken-Ichi Nezasa 4 Hidekazu Tanaka 2
Affiliations

Affiliations

  • 1 Drug Metabolism and Pharmacokinetics, Research Laboratory for Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan. yukari.tanaka@shionogi.co.jp.
  • 2 Oncology and Immunology, Drug Discovery and Disease Research Laboratories, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan.
  • 3 Drug Safety Evaluation, Research Laboratory for Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan.
  • 4 Drug Metabolism and Pharmacokinetics, Research Laboratory for Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan.
Abstract

Epertinib (S-222611) is a potent, reversible, and selective tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR), human EGFR2 (HER2), and human EGFR4. We developed experimental brain metastasis models by intraventricular injection (intraventricular injection mouse model; IVM) of HER2-positive breast Cancer (MDA-MB-361-luc-BR2/BR3) or T790M-EGFR-positive lung Cancer (NCI-H1975-luc) cells. After a single oral administration, epertinib and lapatinib concentrations in brain metastatic regions were analyzed by quantitative imaging mass spectrometry. In the NCI-H1975 lung Cancer IVM, the concentration of epertinib in brain metastasis was comparable to that of lapatinib. However, in the MDA-MB-361 breast Cancer IVM, the concentration of epertinib in brain metastasis was >10 times higher than that of lapatinib. Furthermore, the epertinib tumor-to-normal brain ratio was ~4 times higher than that of lapatinib. Blood-tumor barrier (BTB) permeability was assessed in each brain metastatic region. In the lung Cancer model, fluorescently labeled dextran was more highly detected in brain metastatic regions than in brain parenchyma. However, in Breast Cancer Models, dextran fluorescence intensity in brain metastatic regions and brain parenchyma were comparable, suggesting that the BTB remained largely intact. Epertinib would be promised as a therapeutic agent for HER2-positive breast Cancer with brain metastasis.

Figures
Products