1. Academic Validation
  2. 2- O-α-D-Glucopyranosyl-l-ascorbic acid as an antitumor agent for infusion therapy

2- O-α-D-Glucopyranosyl-l-ascorbic acid as an antitumor agent for infusion therapy

  • Biochem Biophys Rep. 2017 Apr 22;10:232-236. doi: 10.1016/j.bbrep.2017.04.014.
Kaori Miura 1 Akihiro Tai 1
Affiliations

Affiliation

  • 1 Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562, Nanatsuka-cho, Shobara, Hiroshima 727-0023, Japan.
Abstract

Ascorbic acid (AA) has been reported as a treatment for Cancer patients. Intravenous (iv) administration of high-dose AA increases plasma AA levels to pharmacologic concentrations and generates Reactive Oxygen Species (ROS) to exert anti-tumor activity via enhancement of oxidative stress. However, AA is very unstable in aqueous solutions and it is impossible to preserve AA for a long period in a solution. 2-O-α-D-Glucopyranosyl-l-ascorbic acid (AA-2G), which is a glucoside derivative of AA, has been found to exhibit much higher stability than AA in aqueous solutions and it shows vitamin C activity after enzymatic hydrolysis to AA. To evaluate the effectiveness of AA-2G for Cancer treatment, we examined the antitumor activity of AA-2G to murine colon carcinoma (colon-26) cells and in tumor-bearing mice. AA-2G did not show cytotoxicity to colon-26 cells, whereas AA exhibited a significant cytotoxic effect in a concentration-dependent manner. In colon-26 tumor-bearing mice, iv administration of high-dose AA-2G as well as that of AA significantly inhibited tumor growth. Experiments on the biodistribution and clearance of AA-2G in tumor-bearing mice showed that AA-2G was rapidly hydrolyzed to AA and exhibited significant antitumor activity. Treatment of tumor-bearing mice with AA-2G tended to increase plasma malondialdehyde level. These results indicated that the antitumor activity of AA-2G was caused by ROS generated by AA released by rapid hydrolysis of AA-2G.

Keywords

2-O-α-D-glucopyranosyl-L-ascorbic acid; Ascorbic acid; Cancer; Oxidative stress.

Figures
Products