1. Academic Validation
  2. Lignoceric acid biosynthesis in the developing brain. Activities of mitochondrial acetyl-CoA-dependent synthesis and microsomal malonyl-CoA chain-elongating system in relation to myelination. Comparison between normal mouse and dysmyelinating mutants (quaking and jimpy)

Lignoceric acid biosynthesis in the developing brain. Activities of mitochondrial acetyl-CoA-dependent synthesis and microsomal malonyl-CoA chain-elongating system in relation to myelination. Comparison between normal mouse and dysmyelinating mutants (quaking and jimpy)

  • Eur J Biochem. 1977 Jan 3;72(1):41-7. doi: 10.1111/j.1432-1033.1977.tb11222.x.
J M Bourre M Y Paturneau-Jouas O L Daudu N A Baumann
Abstract

Age-related changes in the activities of microsomal and mitochondrial elongating systems have been determined in mouse brain from birth to maturity. In microsomes, the components necessary for behenyl-CoA (docosanoly-CoA) elongation have been found to be NADPH and malonyl-CoA. In mitochondria, both NADH and NADPH are used and acetyl-CoA is the only donor of two-carbon-atoms unit. The synthesised fatty acids were identified by thin-layer and gas chromatography. The specific activity is higher in microsomes than in mitochondria. In microsomes, the specific activity for malonyl-Co-A incorporation reached a maximum at 15 - 20 days of age; this peak was not obtained in the Quaking and Jimpy mutants. The increase in Enzyme activity (specific activity and total activity per brain) paralleled the myelin deposition. The activity of the mitochondrial system increases regularly during development: it is not correlated to myelination and it is not affected in the Quaking mutant. The interplay between microsomal and mitochondrial elongation systems is studied.

Figures
Products