1. Academic Validation
  2. Synthesis and characterization of [76Br]-labeled high-affinity A3 adenosine receptor ligands for positron emission tomography

Synthesis and characterization of [76Br]-labeled high-affinity A3 adenosine receptor ligands for positron emission tomography

  • Nucl Med Biol. 2009 Jan;36(1):3-10. doi: 10.1016/j.nucmedbio.2008.10.003.
Dale O Kiesewetter 1 Lixin Lang Ying Ma Abesh Kumar Bhattacharjee Zhan-Guo Gao Bhalchandra V Joshi Artem Melman Sonia de Castro Kenneth A Jacobson
Affiliations

Affiliation

  • 1 Positron Emission Tomography Radiochemistry Group, NIBIB, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA. dk7k@nih.gov
Abstract

Introduction: Bromine-76-radiolabeled analogues of previously reported high-affinity A(3) Adenosine Receptor (A(3)AR) nucleoside ligands have been prepared as potential radiotracers for positron emission tomography.

Methods: The radiosyntheses were accomplished by oxidative radiobromination on the N(6)-benzyl moiety of trimethyltin precursors. Biodistribution studies of the kinetics of uptake were conducted in awake rats.

Results: We prepared an agonist ligand {[(76)Br](1'S,2'R,3'S,4'R,5'S)-4'-{2-chloro-6-[(3-bromophenylmethyl)amino]purin-9-yl}-1'-(methylaminocarbonyl)bicyclo[3.1.0]hexane-2',3'-diol (MRS3581)} in 59% radiochemical yield with a specific activity of 19.5 GBq/micromol and an antagonist ligand {[(76)Br](1'R,2'R,3'S,4'R,5'S)-4'-(6-(3-bromobenzylamino)-2-chloro-9H-purin-9-yl)bicyclo[3.1.0]hexane-2',3'-diol (MRS5147)} in 65% radiochemical yield with a specific activity of 22 GBq/micromol. The resultant products exhibited the expected high affinity (K(i) approximately 0.6 nM) and specific binding at the human A(3)AR in vitro. Biodistribution studies in the rat showed uptake in the organs of excretion and metabolism. The antagonist MRS5147 exhibited increasing uptake in testes, an organ that contains significant quantities of A(3)AR, over a 2-h time course, which suggests the presence of a specific A(3)AR retention mechanism.

Conclusion: We were able to compare uptake of the [(76)Br]-labeled antagonist MRS5147 to [(76)Br]agonist MRS3581. The antagonist MRS5147 shows increasing uptake in the testes, an A(3)AR-rich tissue, suggesting that this ligand may have promise as a molecular imaging agent.

Figures
Products