1. Academic Validation
  2. Thienopyrimidine derivatives exert their anticancer efficacy via apoptosis induction, oxidative stress and mitotic catastrophe

Thienopyrimidine derivatives exert their anticancer efficacy via apoptosis induction, oxidative stress and mitotic catastrophe

  • Eur J Med Chem. 2017 Sep 29;138:1053-1065. doi: 10.1016/j.ejmech.2017.07.028.
Haneen Amawi 1 Chandrabose Karthikeyan 2 Rekha Pathak 3 Noor Hussein 1 Ryann Christman 1 Robert Robey 4 Charles R Ashby Jr 5 Piyush Trivedi 3 Ashim Malhotra 6 Amit K Tiwari 7
Affiliations

Affiliations

  • 1 Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA.
  • 2 School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal MP, India. Electronic address: karthikeyanchandrabose@gmail.com.
  • 3 School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal MP, India.
  • 4 Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
  • 5 Pharmaceutical Sciences, College of Pharmacy, St. John's University Queens, NY, USA.
  • 6 School of Pharmacy, Pacific University, 222 SE 8th Ave, Hillsboro, OR, USA.
  • 7 Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA. Electronic address: amit.tiwari@utoledo.edu.
Abstract

In this study, a series of 13 structural variants of thieno[2,3d]pyrimidine derivatives (6a-6m) were synthesized and screened for cytotoxicity in a panel of colorectal, ovarian, and brain Cancer cell lines. The selectivity of the compounds was assessed by determining the cytotoxicity in normal epithelial cell line (CHO). The most potent compound, 6j, was efficacious (with IC50 range of 0.6-1.2 μM) in colon (HCT116 and HCT15), brain (LN-229 and GBM-10) and ovarian (A2780 and OV2008) Cancer cell lines. In contrast, in the normal cell line (CHO), the IC50 values for 6j were 14 ± 1.3 μM. Compound 6j significantly inhibited the clonogenic potential of HCT116, OV2008 and A2780 cell lines in concentration - dependent (0.5-4 μM) manner. Also, 6j induced 1) formation of reactive oxygen species; 2) Apoptosis and 3) mitotic catastrophe in HCT116 and OV2008 cells (IC50 = 0.5-2 μM). Furthermore, Apoptosis was the predominant mechanism of death in A2780 cells. The cytotoxicity of 6j in wild type HCT116 cells was similar to that in HCT116 cells lacking the apoptotic genes for Bax, Bak, or Bak and Bax, indicating that 6j induces mitotic catastrophe as alternative mechanism of death when when certain apoptotic proteins are absent. In summary, this study has identified a lead molecule, 6j, that selectively induces oxidative stress, Apoptosis and mitotic catastrophe in specific Cancer (colon and ovarian) cell lines.

Keywords

Antiproliferative; Apoptosis; Colon cancer; Mitotic catastrophe; Ovarian cancer; Reactive oxygen species; Thienopyrimidines.

Figures
Products