1. Academic Validation
  2. Cyclopiazonic Acid-Induced Ca2+ Store Depletion Initiates Endothelium-Dependent Hyperpolarization-Mediated Vasorelaxation of Mesenteric Arteries in Healthy and Colitis Mice

Cyclopiazonic Acid-Induced Ca2+ Store Depletion Initiates Endothelium-Dependent Hyperpolarization-Mediated Vasorelaxation of Mesenteric Arteries in Healthy and Colitis Mice

  • Front Physiol. 2021 Mar 9;12:639857. doi: 10.3389/fphys.2021.639857.
Lu Yun Zhang 1 Xiong Ying Chen 1 Hui Dong 1 2 Feng Xu 1
Affiliations

Affiliations

  • 1 Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.
  • 2 Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China.
Abstract

Purposes: Since the role of store-operated calcium entry (SOCE) in endothelium-dependent hyperpolarization (EDH)-mediated vasorelaxation of mesenteric arteries in health and colitis is not fully understood, cyclopiazonic acid (CPA), a specific inhibitor of the sarco(endo) plasmic reticulum calcium-ATPases (SERCA), was used as a SOCE activator to investigate its role in normal mice and its alteration in colitis mice. Methods: The changes in CA2+ signaling in vascular endothelial cells (VEC) were examined by single cell CA2+ imaging and tension of mesenteric arteries in response to CPA were examined using Danish DMT520A microvascular measuring system. Results: CPA activated the SOCE through depletion of the endoplasmic reticulum (ER) CA2+ in endothelial cells. CPA had a concentration-dependent vasorelaxing effect in endothelium-intact mesenteric arteries, which was lost after endothelial removal. Both nitric oxide (NO) and prostacyclin (PGI2) inhibitors did not affect CPA-induced vasorelaxation; however, after both NO and PGI2 were inhibited, KCA channel blocker [10 mM tetraethylammonium chloride (TEA)] inhibited CPA-induced vasorelaxation while KCA channel activator (0.3 μM SKA-31) promoted it. Two SOCE blockers [30 μM SKF96365 and 100 μM flufenamic acid (FFA)], and an Orai channel blocker (30 μM GSK-7975A) inhibited this vasorelaxation. The inhibition of both Na+/K+-ATPase (NKA) and Na+/CA2+-exchange (NCX) also inhibited CPA-induced vasorelaxation. Finally, the CPA involved in EDH-induced vasorelaxation by the depletion of ER CA2+ of mesenteric arteries was impaired in colitis mice. Conclusion: Depletion of ER CA2+ by CPA induces a vasorelaxation of mesenteric arteries that is mediated through EDH mechanism and invokes the activation of SOCE. The CPA-induced endothelium-dependent dilation is impaired in colitis which may limit blood perfusion to the intestinal mucosa.

Keywords

colitis; cyclopiazonic acid; endothelium-dependent hyperpolarization; mesenteric arteries; store-operated calcium entry.

Figures
Products