1. Academic Validation
  2. The role of specific retinoid receptors in sebocyte growth and differentiation in culture

The role of specific retinoid receptors in sebocyte growth and differentiation in culture

  • J Invest Dermatol. 2000 Feb;114(2):349-53. doi: 10.1046/j.1523-1747.2000.00868.x.
M J Kim 1 N Ciletti S Michel U Reichert R L Rosenfield
Affiliations

Affiliation

  • 1 Departments of Pediatrics and Medicine, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, USA.
Abstract

Retinoic acid derivatives (retinoids) exert their pleiotropic effects on cell development through specific nuclear receptors, the retinoic acid receptors and retinoid X receptors. Despite recent progress in understanding the cellular and molecular mechanisms of retinoid activity, it is unknown which of the retinoid receptor pathways are involved in the specific processes of sebocyte growth and development. In this study, we investigated the roles of specific retinoid receptors in sebocyte growth and differentiation, by testing the effects of selective retinoic acid receptor and retinoid X receptor ligands at concentrations between 10-10 M and 10-6 M in a primary rat preputial cell monolayer culture system. Cell growth was determined by number of cells and colonies, and cell differentiation by analysis of lipid-forming colonies. All-trans retinoic acid and selective retinoic acid receptor agonists (CD271 = adapalene, an RAR-beta,gamma agonist; CD2043 = retinoic acid receptor pan-agonist; and CD336 = Am580, an RAR-alpha agonist) caused significant decreases in numbers of cells, colonies, and lipid-forming colonies, but with an exception at high doses of all-trans retinoic acid (10-6 M), with which only a small number of colonies grew but they became twice as differentiated as controls (42.2 +/- 4.0% vs 22.6 +/- 2.7%, mean +/- SEM, lipid-forming colonies, p < 0.01). Furthermore, the RAR-beta,gamma antagonist CD2665 antagonized the suppressive effects of all-trans retinoic acid, adapalene, and CD2043 on both cell growth and differentiation. In contrast, the retinoid X receptor agonist CD2809 increased cell growth slightly and lipid-forming colonies dramatically in a clear dose-related manner to a maximum of 73.7% +/- 6.7% at 10-6 M (p < 0. 001). Our data suggest that retinoic acid receptors and retinoid X receptors differ in their roles in sebocyte growth and differentiation: (i) retinoic acid receptors, especially the beta and/or gamma subtypes, mediate both the antiproliferative and antidifferentiative effects of retinoids; (ii) retinoid X receptors mediate prominent differentiative and weak proliferative effects; (iii) the antiproliferative and antidifferentiative effects of all-trans retinoic acid are probably mediated by retinoic acid receptors, whereas its differentiative effect at high dose may be mediated by retinoid X receptors via all-trans retinoic acid metabolism to 9-cis retinoic acid, the natural ligand of retinoid X receptors.

Figures
Products