1. Academic Validation
  2. Active oxygen chemistry within the liposomal bilayer. Part IV: Locating 2',7'-dichlorofluorescein (DCF), 2',7'-dichlorodihydrofluorescein (DCFH) and 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) in the lipid bilayer

Active oxygen chemistry within the liposomal bilayer. Part IV: Locating 2',7'-dichlorofluorescein (DCF), 2',7'-dichlorodihydrofluorescein (DCFH) and 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) in the lipid bilayer

  • Chem Phys Lipids. 2004 Aug;131(1):123-33. doi: 10.1016/j.chemphyslip.2004.04.006.
Michal Afri 1 Aryeh A Frimer Yael Cohen
Affiliations

Affiliation

  • 1 The Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel. afrimi@mail.biu.ac.il
Abstract

2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) is commonly used to detect the generation of reactive oxygen intermediates and for assessing the overall oxidative stress in toxicological phenomenon. It has been suggested that DCFH-DA crosses the cell membrane, subsequently undergoing deacetylation by intracellular esterases. The resulting 2',7'-dichlorodihydrofluorescein (DCFH) is proposed to react with intracellular hydrogen peroxide or Other oxidizing ROS to give the fluorescent 2',7'-dichlorofluorescein (DCF). Using an NMR chemical shift-polarity correlation, we have determined that DCFH-DA and DCFH are located well within the lipid bilayer and certainly not at the interface. These results, therefore, put into serious question the proposed ability of DCFH to come in contact with the aqueous phase and thereby interact with aqueous intracellular ROS and components. However, H2O2 and superoxide can cross or at least penetrate the lipid bilayer and react with certain lipophilic substrates. This may well describe the mode of reaction of these and Other ROS with DCFH.

Figures
Products