1. Academic Validation
  2. Copper binding to the amyloid-beta (Abeta) peptide associated with Alzheimer's disease: folding, coordination geometry, pH dependence, stoichiometry, and affinity of Abeta-(1-28): insights from a range of complementary spectroscopic techniques

Copper binding to the amyloid-beta (Abeta) peptide associated with Alzheimer's disease: folding, coordination geometry, pH dependence, stoichiometry, and affinity of Abeta-(1-28): insights from a range of complementary spectroscopic techniques

  • J Biol Chem. 2004 Apr 30;279(18):18169-77. doi: 10.1074/jbc.M313572200.
Christopher D Syme 1 Rebecca C Nadal Stephen E J Rigby John H Viles
Affiliations

Affiliation

  • 1 School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom.
Abstract

There is now direct evidence that copper is bound to amyloid-beta peptide (Abeta) in senile plaque of Alzheimer's disease. Copper is also linked with the neurotoxicity of Abeta and free radical damage, and Cu(2+) chelators represent a possible therapy for Alzheimer's disease. We have therefore used a range of complementary spectroscopies to characterize the coordination of Cu(2+) to Abeta in solution. The mode of copper binding is highly pH-dependent. EPR spectroscopy indicates that both coppers have axial, Type II coordination geometry, square-planar or square-pyramidal, with nitrogen and oxygen ligands. Circular dichroism studies indicate that copper chelation causes a structural transition of Abeta. Competition studies with glycine and l-histidine indicate that copper binds to Abeta-(1-28) at pH 7.4 with an affinity of K(a) approximately 10(7) m(-1). (1)H NMR indicates that histidine residues are involved in Cu(2+) coordination but that Tyr(10) is not. Studies using analogues of Abeta-(1-28) in which each of the histidine residues have been replaced by alanine or in which the N terminus is acetylated suggest that the N terminus and His(13) are crucial for Cu(2+) binding and that His(6) and His(14) are also implicated. Evidence for the link between Alzheimer's disease and Cu(2+) is growing, and our studies have made a significant contribution to understanding the mode of Cu(2+) binding to Abeta in solution.

Figures
Products