1. Academic Validation
  2. Phosphodiesterase IV inhibition by piclamilast potentiates the cytodifferentiating action of retinoids in myeloid leukemia cells. Cross-talk between the cAMP and the retinoic acid signaling pathways

Phosphodiesterase IV inhibition by piclamilast potentiates the cytodifferentiating action of retinoids in myeloid leukemia cells. Cross-talk between the cAMP and the retinoic acid signaling pathways

  • J Biol Chem. 2004 Oct 1;279(40):42026-40. doi: 10.1074/jbc.M406530200.
Edoardo Parrella 1 Maurizio Gianni' Virginia Cecconi Elisa Nigro Maria Monica Barzago Alessandro Rambaldi Cecile Rochette-Egly Mineko Terao Enrico Garattini
Affiliations

Affiliation

  • 1 Laboratory of Molecular Biology, Centro Catullo e Daniela Borgomainerio, Istituto di Ricerche Farmacologiche "Mario Negri," via Eritrea 62, Milano 20157, Italy.
Abstract

Inhibition of phosphodiesterase IV by N-(3,5-dichloropyrid-4-yl)-3-cyclopentyloxy-4-methoxybenzamide (piclamilast) enhances the myeloid differentiation induced by all-trans-retinoic acid (ATRA), retinoic acid receptor alpha (RARalpha), or retinoic acid receptor X agonists in NB4 and Other retinoid-sensitive myeloid leukemia cell types. ATRA-resistant NB4.R2 cells are also partially responsive to the action of piclamilast and retinoic acid receptor X agonists. Treatment of NB4 cells with piclamilast or ATRA results in activation of the cAMP signaling pathway and nuclear translocation of cAMP-dependent protein kinase. This causes a transitory increase in cAMP-responsive element-binding protein phosphorylation, which is followed by down-modulation of the system. ATRA + piclamilast have no additive effects on the modulation of the cAMP pathway, and the combination has complex effects on cAMP-regulated genes. Piclamilast potentiates the ligand-dependent transactivation and degradation of RARalpha through a cAMP-dependent protein kinase-dependent phosphorylation. Enhanced transactivation is also observed in the case of PML-RARalpha. In NB4 cells, increased transactivation is likely to be at the basis of enhanced myeloid maturation and enhanced expression of many retinoid-dependent genes. Piclamilast and/or ATRA exert major effects on the expression of cEBP and STAT1, two types of transcription factors involved in myeloid maturation. Induction and activation of STAT1 correlates directly with enhanced cytodifferentiation. Finally, ERK and the cAMP target protein, Epac, do not participate in the maturation program activated by ATRA + piclamilast. Initial in vivo studies conducted in severe combined immunodeficiency mice transplanted with NB4 leukemia cells indicate that the enhancing effect of piclamilast on ATRA-induced myeloid maturation translates into a therapeutic benefit.

Figures
Products