1. Academic Validation
  2. Isothiocyanates induce cell cycle arrest, apoptosis and mitochondrial potential depolarization in HL-60 and multidrug-resistant cell lines

Isothiocyanates induce cell cycle arrest, apoptosis and mitochondrial potential depolarization in HL-60 and multidrug-resistant cell lines

  • Anticancer Res. 2005 Sep-Oct;25(5):3375-86.
Jana Jakubikova 1 Yongping Bao Jan Sedlak
Affiliations

Affiliation

  • 1 Nutrition Division, Institute of Food Research, Norwich Research Park, Norwich, NR4 7UA, UK.
PMID: 16101152
Abstract

Isothiocyanates from Cruciferous vegetables have been identified as potent Anticancer agents in animal and human epidemiological studies. The present study compared the biological activities of six dietary isothiocyanates (ITCs), allyl-ITC (AITC), benzyl-ITC (BITC), phenethyl-ITC (PEITC), sulforaphane (SFN), erucin (ERN) and iberin (IBN), on cell cycle progression, Apoptosis induction and mitochondrial transmembrane potential in multidrug-resistant HL60/ADR (MRP-1-positive) and HL60/VCR (Pgp-1-positive) cells in comparison to the parent cell line HL60. Multidrug-resistant HL60/ADR and HL60/VCR cells were less sensitive than the parental HL60 cells to all the six tested ITCs, since the medians of IC50 values were 2.8- and 2.0-fold higher. All the selected ITCs induced time- and dose-dependant G2/M arrest, with the most effective AITC (10 microM, 24 h) inducing 52% G2/M accumulation in HL60 cells. Apoptosis was determined by Annexin V-FITC staining, metabolic conversion of fluorescein diacetate and sub-G1 population quantification. Cell cycle distribution and mitochondrial JC-1 aggregation were determined by flow cytometry. The effectiveness of ITCs in Apoptosis induction and mitochondrial potential dissipation followed the order: BITC=PEITC>ERN=IBN>AITC>SFN.

Figures
Products