1. Academic Validation
  2. Reactions of the fluorescent sensor, Zinquin, with the zinc-proteome: adduct formation and ligand substitution

Reactions of the fluorescent sensor, Zinquin, with the zinc-proteome: adduct formation and ligand substitution

  • Inorg Chem. 2011 Oct 17;50(20):10124-33. doi: 10.1021/ic201076w.
Andrew B Nowakowski 1 David H Petering
Affiliations

Affiliation

  • 1 Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA.
Abstract

Zinquin (ZQ) is a commonly used sensor for cellular Zn(2+) status. It has been assumed that it measures accessible Zn(2+) concentrations in the nanomolar range. Instead, this report shows a consistent pattern across seven mammalian cell and tissue types that ZQ reacts with micromolar concentrations of Zn(2+) bound as Zn-proteins. The predominant class of products were ZQ-Zn-protein adducts that were characterized in vivo and in vitro by a fluorescence emission spectrum centered at about 470 nm, by their migration over Sephadex G-75 as protein not low molecular weight species, by the exclusion of reaction with lipid vesicles, and by their large aggregate concentration. In addition, variable, minor formation of Zn(ZQ)(2) with a fluorescence band at about 490 nm was observed in vivo in each case. Because incubation of isolated Zn-proteome with ZQ also generated similar amounts of Zn(ZQ)(2), it was concluded that this species had formed through direct ligand substitution in which ZQ had successfully competed for protein-bound Zn(2+). Parallel studies with the model Zn-proteins, alcohol dehydrogenase (ADH), and Alkaline Phosphatase (AP) revealed a similar picture of reactivity: ZQ(ACID) (Zinquin acid, (2-methyl-8-p-toluenesulfonamido-6-quinolyloxy)acetate)) able to bind to one Zn(2+) and extract the Other in Zn(2)-ADH, whereas it removed one Zn(2+) from Zn(2)-AP and did not bind to the Other. Zinquin ethyl ester (ethyl(2-methyl-8-p-toluenesulfonamido-6-quinolyloxy)acetate); ZQ(EE)) bound to both proteins without sequestering Zn(2+) from either one. In contrast to a closely related sensor, 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ), neither ZQ(ACID) nor ZQ(EE) associated with Zn-carbonic anhydrase. A survey of reactivity of these sensors with partially fractionated Zn-proteome confirmed that ZQ and TSQ bind to distinct, overlapping subsets of the Zn-proteome.

Figures
Products