1. Academic Validation
  2. Comparative evaluation of synthetic anti-HER2 Affibody molecules site-specifically labelled with 111In using N-terminal DOTA, NOTA and NODAGA chelators in mice bearing prostate cancer xenografts

Comparative evaluation of synthetic anti-HER2 Affibody molecules site-specifically labelled with 111In using N-terminal DOTA, NOTA and NODAGA chelators in mice bearing prostate cancer xenografts

  • Eur J Nucl Med Mol Imaging. 2012 Mar;39(3):481-92. doi: 10.1007/s00259-011-1992-9.
Jennie Malmberg 1 Anna Perols Zohreh Varasteh Mohamed Altai Alexis Braun Mattias Sandström Ulrike Garske Vladimir Tolmachev Anna Orlova Amelie Eriksson Karlström
Affiliations

Affiliation

  • 1 Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
Abstract

Purpose: In disseminated prostate Cancer, expression of human epidermal growth factor receptor type 2 (HER2) is one of the pathways to androgen independence. Radionuclide molecular imaging of HER2 expression in disseminated prostate Cancer might identify patients for HER2-targeted therapy. Affibody molecules are small (7 kDa) targeting proteins with high potential as tracers for radionuclide imaging. The goal of this study was to develop an optimal Affibody-based tracer for visualization of HER2 expression in prostate Cancer.

Methods: A synthetic variant of the anti-HER2 Z(HER2:342) Affibody molecule, Z(HER2:S1), was N-terminally conjugated with the Chelators DOTA, NOTA and NODAGA. The conjugated proteins were biophysically characterized by electrospray ionization mass spectroscopy (ESI-MS), circular dichroism (CD) spectroscopy and surface plasmon resonance (SPR)-based biosensor analysis. After labelling with (111)In, the biodistribution was assessed in normal mice and the two most promising conjugates were further evaluated for tumour targeting in mice bearing DU-145 prostate Cancer xenografts.

Results: The HER2-binding equilibrium dissociation constants were 130, 140 and 90 pM for DOTA-Z(HER2:S1), NOTA-Z(HER2:S1) and NODAGA-Z(HER2:S1), respectively. A comparative study of (111)In-labelled DOTA-Z(HER2:S1), NOTA-Z(HER2:S1) and NODAGA-Z(HER2:S1) in normal mice demonstrated a substantial influence of the Chelators on the biodistribution properties of the conjugates. (111)In-NODAGA-Z(HER2:S1) had the most rapid clearance from blood and healthy tissues. (111)In-NOTA-Z(HER2:S1) showed high hepatic uptake and was excluded from further evaluation. (111)In-DOTA-Z(HER2:S1) and (111)In-NODAGA-Z(HER2:S1) demonstrated specific uptake in DU-145 prostate Cancer xenografts in nude mice. The tumour uptake of (111)In-NODAGA-Z(HER2:S1), 5.6 ± 0.4%ID/g, was significantly lower than the uptake of (111)In-DOTA-Z(HER2:S1), 7.4 ± 0.5%ID/g, presumably because of lower bioavailability due to more rapid clearance. (111)In-NODAGA-Z(HER2:S1) provided higher tumour-to-blood ratio, but somewhat lower tumour-to-liver, tumour-to-spleen and tumour-to-bone ratios.

Conclusion: Since distant prostate Cancer metastases are situated in bone or bone marrow, the higher tumour-to-bone ratio is the most important. This renders (111)In-DOTA-Z(HER2:S1) a preferable agent for imaging of HER2 expression in disseminated prostate Cancer.

Figures
Products