1. Academic Validation
  2. Salsolinol modulation of dopamine neurons

Salsolinol modulation of dopamine neurons

  • Front Behav Neurosci. 2013 May 24:7:52. doi: 10.3389/fnbeh.2013.00052.
Guiqin Xie 1 Krešimir Krnjević Jiang-Hong Ye
Affiliations

Affiliation

  • 1 Department of Anesthesiology, Pharmacology, and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey Newark, NJ, USA ; Department of Physiology, Nanjing Medical University Nanjing, China.
Abstract

Salsolinol, a tetrahydroisoquinoline present in the human and rat brains, is the condensation product of dopamine and acetaldehyde, the first metabolite of ethanol. Previous evidence obtained in vivo links salsolinol with the mesolimbic dopaminergic (DA) system: salsolinol is self-administered into the posterior of the ventral tegmental area (pVTA) of rats; intra-VTA administration of salsolinol induces a strong conditional place preference and increases dopamine release in the nucleus accumbens (NAc). However, the underlying neuronal mechanisms are unclear. Here we present an overview of some of the recent research on this topic. Electrophysiological studies reveal that DA neurons in the pVTA are a target of salsolinol. In acute brain slices from rats, salsolinol increases the excitability and accelerates the ongoing firing of dopamine neurons in the pVTA. Intriguingly, this action of salsolinol involves multiple pre- and post-synaptic mechanisms, including: (1) depolarizing dopamine neurons; (2) by activating μ opioid receptors on the GABAergic inputs to dopamine neurons - which decreases GABAergic activity - dopamine neurons are disinhibited; and (3) enhancing presynaptic glutamatergic transmission onto dopamine neurons via activation of dopamine type 1 receptors, probably situated on the glutamatergic terminals. These novel mechanisms may contribute to the rewarding/reinforcing properties of salsolinol observed in vivo.

Keywords

GABAergic transmission; addictive property; brain slices; dopaminergic neurons; electrophysiology; glutamatergic transmissions; mu opioid receptors; reward.

Figures
Products