1. Academic Validation
  2. Design, synthesis and biological evaluation of a novel series of peripheral-selective noradrenaline reuptake inhibitor

Design, synthesis and biological evaluation of a novel series of peripheral-selective noradrenaline reuptake inhibitor

  • Bioorg Med Chem. 2015 Aug 1;23(15):5000-5014. doi: 10.1016/j.bmc.2015.05.017.
Ikuo Fujimori 1 Tomoya Yukawa 2 Taku Kamei 1 Yoshihisa Nakada 1 Nobuki Sakauchi 1 Masami Yamada 1 Yusuke Ohba 1 Maiko Takiguchi 1 Masako Kuno 1 Izumi Kamo 1 Hideyuki Nakagawa 1 Teruki Hamada 1 Tomoko Igari 1 Teruaki Okuda 1 Satoshi Yamamoto 1 Tetsuya Tsukamoto 1 Yuji Ishichi 1 Hiroyuki Ueno 1
Affiliations

Affiliations

  • 1 Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
  • 2 Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, 26-1, Muraokahigashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan. Electronic address: tomoya.yukawa@takeda.com.
Abstract

Centrally acting noradrenaline reuptake inhibitor (NRI) is reportedly effective for patients with stress urinary incontinence (SUI) by increasing urethral closure in the clinical Phase IIa study with esreboxetine. Noradrenaline transporters are expressed in both central and peripheral nervous systems and the contribution of each site to efficacy has not been clarified. This report describes the development of a series of peripheral-selective 7-phenyl-1,4-oxazepane NRIs to investigate the contribution of the peripheral site to increasing urethral resistance in rats. (6S,7R)-1,4-Oxazepane derivative 7 exhibited noradrenaline transporter inhibition with high selectivity against inhibitions of serotonin and dopamine transporters. A replacement of hydroxyl with acetamide group contributed to enhancement of peripheral selectivity by increasing molecular polarity. Compound 12, N-{[(6S,7R)-7-(3,4-dichlorophenyl)-1,4-oxazepan-6-yl]methyl}acetamide 0.5 fumarate, which showed effectively no brain penetration in rats, increased urethral resistance in a dose-dependent manner and exhibited a maximal effect on par with esreboxetine. These results demonstrate that the urethral resistance-increasing effects of NRI in rats are mainly caused by the inhibition of noradrenaline transporters in the peripheral sites.

Keywords

7-Aryl-1,4-oxazepane derivatives; Peripheral-selective noradrenaline reuptake inhibitor; Stress urinary incontinence.

Figures
Products