1. Academic Validation
  2. A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens

A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens

  • Int J Antimicrob Agents. 2015 Nov;46(5):483-93. doi: 10.1016/j.ijantimicag.2015.08.011.
Karen Bush 1
Affiliations

Affiliation

  • 1 Indiana University, Bloomington, IN, USA. Electronic address: karbush@indiana.edu.
Abstract

β-Lactamase inhibitors (BLIs) have played an important role in combatting β-lactam resistance in Gram-negative bacteria, but their effectiveness has diminished with the evolution of diverse and deleterious varieties of β-lactamases. In this review, a new generation of BLIs and inhibitor combinations is presented, describing epidemiological information, pharmacodynamic studies, resistance identification and current clinical status. Novel serine BLIs of major interest include the non-β-lactams of the diazabicyclo[3.2.1]octanone (DBO) series. The DBOs avibactam, relebactam and RG6080 inhibit most class A and class C β-lactamases, with selected inhibition of class D Enzymes by avibactam. The novel boronic acid inhibitor RPX7009 has a similar inhibitory profile. All of these inhibitors are being developed in combinations that are targeting primarily carbapenemase-producing Gram-negative pathogens. Two BLI combinations (ceftolozane/tazobactam and ceftazidime/avibactam) were recently approved by the US Food and Drug Administration (FDA) under the designation of a Qualified Infectious Disease Product (QIDP). Other inhibitor combinations that have at least completed phase 1 clinical trials are ceftaroline fosamil/avibactam, aztreonam/avibactam, imipenem/relebactam, meropenem/RPX7009 and cefepime/AAI101. Although effective inhibitor combinations are in development for the treatment of infections caused by Gram-negative bacteria with serine carbapenemases, better options are still necessary for pathogens that produce metallo-β-lactamases (MBLs). The aztreonam/avibactam combination demonstrates inhibitory activity against MBL-producing enteric bacteria owing to the stability of the monobactam to these Enzymes, but resistance is still an issue for MBL-producing non-fermentative bacteria. Because all of the inhibitor combinations are being developed as parenteral drugs, an orally bioavailable combination would also be of interest.

Keywords

Carbapenemase; ESBL; Gram-negative; MBL; β-Lactam; β-Lactamase inhibitor.

Figures
Products