1. Academic Validation
  2. Radiosensitizing effect of irisquinone on glioma through the downregulation of HIF-1α evaluated by 18F-FDG and 18F-FMISO PET/CT

Radiosensitizing effect of irisquinone on glioma through the downregulation of HIF-1α evaluated by 18F-FDG and 18F-FMISO PET/CT

  • Nucl Med Commun. 2016 Jul;37(7):705-14. doi: 10.1097/MNM.0000000000000498.
Hui Wang 1 Yu Zhang Wenjing Yu Xuefeng Zhao Yangyang Xue Huiqin Xu
Affiliations

Affiliation

  • 1 Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
Abstract

Objective: The aim of this study was to elucidate the radiosensitizing mechanism of irisquinone (IQ) and evaluate the utility of F-fluorodeoxyglucose (F-FDG) and F-fluoromisonidazole (F-FMISO) PET/computed tomography (CT) in assessing the radiosensitizing effect of IQ.

Materials and methods: In an in-vitro experiment, C6 rat glioma cells were treated with IQ, radiation, or both. The viability and radiosensitivity of C6 cells were detected using the MTT assay and clonogenic survival assay. The expression of hypoxia-inducible factor-1α (HIF-1α) was evaluated by Real-Time PCR and western blot. In an in-vivo experiment, C6 rat glioma cells were implanted into the right flank of rats and treated with IQ, radiation, both, or no treatment. F-FDG and F-FMISO PET/CT images were obtained before and after treatment. The expression of HIF-1α was detected by immunohistochemistry staining.

Results: In the in-vitro experiment, the results of the MTT assay showed that the half-inhibition concentration (IC50) of IQ for normoxic and hypoxic C6 tumor cells was 17.2 and 21.0 nmol/l, respectively. Clonogenic survival assay showed that IQ could improve the radiosensitivity of both normoxic and hypoxic C6 tumor cells. When the concentration of irradiation was 20% IC50 (4.2 nmol/l), the sensitive enhancement ratio of normoxic and hypoxic C6 tumor cells was 1.18 and 1.33, respectively. The mRNA and protein expression levels of HIF-1α decreased significantly when treated with IQ plus radiation compared with the other groups.In the in-vivo experiment, 24 or 48 h after different treatments, the maximum standardized uptake values (SUVmax) of F-FDG or F-FMISO uptake decreased in the radiation group and the IQ plus radiation group, whereas these values increased in the control and IQ groups. The SUVmax of F-FDG or F-FMISO uptake in IQ plus radiation group were lower than those of the radiation group (t=3.28, 2.62, P<0.05). However, there was no significant decrease in tumor volumes in the radiation group and the IQ plus radiation treatment group early after treatment.Immunohistochemistry staining showed that there were significant differences in the expression of HIF-1α in the four groups (F=87.1, P<0.01). The SUVmax of both F-FDG and F-FMISO uptake showed a significant correlation with the expression of HIF-1α. F-FMISO provided a higher correlation coefficient with HIF-1α than F-FDG (r=0.93, 0.82, P<0.01).

Conclusion: The present experiments indicated that IQ enhanced the radiosensitivity of C6 rat glioma cells both in vitro and in vivo. The primary mechanism of this radiosensitizing effect involves the downregulation of HIF-1α. F-FDG and F-FMISO PET/CT were sensitive and noninvasive for monitoring the early radiosensitizing effect of IQ. Meanwhile, F-FMISO PET/CT provided more information on the changes in tumor hypoxic status.

Figures
Products