1. Academic Validation
  2. Enhancer Remodeling during Adaptive Bypass to MEK Inhibition Is Attenuated by Pharmacologic Targeting of the P-TEFb Complex

Enhancer Remodeling during Adaptive Bypass to MEK Inhibition Is Attenuated by Pharmacologic Targeting of the P-TEFb Complex

  • Cancer Discov. 2017 Mar;7(3):302-321. doi: 10.1158/2159-8290.CD-16-0653.
Jon S Zawistowski 1 Samantha M Bevill 1 Daniel R Goulet 1 Timothy J Stuhlmiller 1 Adriana S Beltran 1 Jose F Olivares-Quintero 1 Darshan Singh 1 Noah Sciaky 1 Joel S Parker 2 Naim U Rashid 3 Xin Chen 1 James S Duncan 1 Martin C Whittle 1 Steven P Angus 1 Sara Hanna Velarde 1 Brian T Golitz 1 Xiaping He 2 Charlene Santos 2 David B Darr 2 Kristalyn Gallagher 4 Lee M Graves 1 Charles M Perou 2 Lisa A Carey 5 H Shelton Earp 1 5 Gary L Johnson 6
Affiliations

Affiliations

  • 1 Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
  • 2 Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
  • 3 Department of Biostatistics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
  • 4 Department of Surgery, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
  • 5 Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
  • 6 Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina. gary_johnson@med.unc.edu.
Abstract

Targeting the dysregulated BRAF-MEK-ERK pathway in Cancer has increasingly emerged in clinical trial design. Despite clinical responses in specific cancers using inhibitors targeting BRaf and MEK, resistance develops often involving nongenomic adaptive bypass mechanisms. Inhibition of MEK1/2 by trametinib in patients with triple-negative breast Cancer (TNBC) induced dramatic transcriptional responses, including upregulation of Receptor Tyrosine Kinases (RTK) comparing tumor samples before and after one week of treatment. In preclinical models, MEK inhibition induced genome-wide enhancer formation involving the seeding of BRD4, MED1, H3K27 acetylation, and p300 that drives transcriptional adaptation. Inhibition of the P-TEFb-associated proteins BRD4 and CBP/p300 arrested enhancer seeding and RTK upregulation. BRD4 bromodomain inhibitors overcame trametinib resistance, producing sustained growth inhibition in cells, xenografts, and syngeneic mouse TNBC models. Pharmacologic targeting of P-TEFb members in conjunction with MEK inhibition by trametinib is an effective strategy to durably inhibit epigenomic remodeling required for adaptive resistance.Significance: Widespread transcriptional adaptation to pharmacologic MEK inhibition was observed in TNBC patient tumors. In preclinical models, MEK inhibition induces dramatic genome-wide modulation of chromatin, in the form of de novo enhancer formation and enhancer remodeling. Pharmacologic targeting of P-TEFb complex members at enhancers is an effective strategy to durably inhibit such adaptation. Cancer Discov; 7(3); 302-21. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 235.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-16462
    99.37%, CDK9抑制剂
    CDK