1. Academic Validation
  2. The Efficacy of Recombinant Platelet-Derived Growth Factor on Beta-Tricalcium Phosphate to Regenerate Femoral Critical Sized Segmental Defects: Longitudinal In Vivo Micro-CT Study in a Rat Model

The Efficacy of Recombinant Platelet-Derived Growth Factor on Beta-Tricalcium Phosphate to Regenerate Femoral Critical Sized Segmental Defects: Longitudinal In Vivo Micro-CT Study in a Rat Model

  • J Invest Surg. 2020 Jun;33(5):476-488. doi: 10.1080/08941939.2018.1519048.
Mohammed Badwelan 1 2 Mohammed Alkindi 1 Sundar Ramalingam 1 Nasser Nooh 1 Khalid Al Hezaimi 3 4 5
Affiliations

Affiliations

  • 1 Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
  • 2 Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Aden University, Aden, Yemen.
  • 3 American Board of Endodontics, Chicago, IL, USA.
  • 4 American Board of Periodontology, Severna Park, MA, USA.
  • 5 Department of Periodontics and Community Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia.
Abstract

Background and Objectives: Beta-tricalcium phosphate (beta-TCP) has been used for bone regeneration. The objective of this study was to assess longitudinally, the regeneration of critical sized segmental defects (CSSD) in rat femur using beta-TCP with or without recombinant platelet-derived growth factor (PDGF) through in vivo micro-computed tomography (micro-CT). Materials and Methods: Following ethical approval unilateral femoral CSSD measuring 5 mm was surgically created, under general anesthesia, in 30 male Wistar-Albino rats (aged 12-18 months; weighing 450-500 g). CSSD was stabilized using titanium mini-plate (4 holes, 1.0 mm thick with 8 mm bar). Depending upon biomaterial used for regeneration, the Animals were randomly divided into: Control group (N = 10): CSSD covered with resorbable collagen membrane (RCM) only; Beta-TCP group (N = 10): CSSD filled with beta-TCP and covered by RCM; Beta-TCP + PDGF group (N = 10): CSSD filled with beta-TCP soaked in recombinant PDGF and covered by RCM. Longitudinal in vivo micro-CT analysis of the CSSD was done postoperatively at baseline, 2nd, 4th, 6th, and 8th weeks to assess volume and mineral density of newly formed bone (NFB) and beta-TCP. Results: Significant increase in NFB volume (NFBV) and mineral density (NFBMD) were observed from baseline to 8-weeks in all groups. Based on longitudinal in vivo micro-CT at 8-weeks, beta-TCP + PDGF group had significantly higher (p < 0.01) NFBV (38.98 ± 7.36 mm3) and NFBMD (3.72 ± 0.32 g/mm3) than the beta-TCP (NFBV-31.15 ± 6.68 mm3; NFBMD-2.28 ± 0.86g/mm3) and control (NFBV: 5.60 ± 1.06 mm3; NFBMD: 0.27 ± 0.02 g/mm3) groups. Significantly, higher reduction in beta-TCP volume (TCPV) and mineral density (TCPMD) were 1 observed in the beta-TCP + PDGF group when compared to the beta-TCP group. Conclusion: Addition of recombinant PDGF to beta-TCP enhanced bone regeneration within rat femoral CSSD and increased resorption rates of beta-TCP particles.

Keywords

beta-tricalcium phosphate; bone regeneration; critical size segmental defect; micro-computed tomography; platelet-derived growth factor; rat femur in vivo model.

Figures
Products