1. Academic Validation
  2. Homocysteine-induced electrical remodeling via the mediation of IP3R1/Nav1.5 signaling pathway

Homocysteine-induced electrical remodeling via the mediation of IP3R1/Nav1.5 signaling pathway

  • Am J Transl Res. 2020 Jul 15;12(7):3822-3841.
Lu Han 1 Aping Wu 1 Qing Li 1 Zhen Xia 1 Yanqing Wu 1 Kui Hong 1 Zirong Xia 1 Juxiang Li 1
Affiliations

Affiliation

  • 1 Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China.
PMID: 32774738
Abstract

Inositol-1,4,5-triphosphate-receptor 1 (IP3R1), a CA2+ channel in the sarcoplasmic reticulum membrane, is an effective regulator of CA2+ release involved in the pathology of most cardiovascular diseases. Our study aim to investigate the underlying mechanism by which IP3R1 signaling mediates the process of homocysteine (Hcy)-induced CA2+ accumulation via interaction with sodium current (Nav1.5) in atrium. We utilized whole-cell patch-clamp analysis and flow cytometry to detect the abnormal electrical activity in mouse atrial myocytes (MACs) obtained from C57B6 mice fed with high-Hcy diet. The results represented not only an increase in protein levels of Nav1.5 and IP3R1, but also an enhanced intracellular levels of CA2+, and prolonged action potential duration (APD). However, the inhibition of IP3R1 or Nav1.5 gene could both attenuate CA2+ accumulation in MACs triggered by Hcy, as well as abnormal electrical activity. In addition, Hcy increased the interaction between IP3R1 and Nav1.5. These data suggest that Hcy induced CA2+ accumulation is mediated by the IP3R1/Nav1.5 signaling pathway, accompanied with the influx of Na+ and CA2+, which act as triggers for electrical remodeling.

Keywords

Homocysteine; ICaL; INaL; IP3R1; Nav1.5; electrical remodeling.

Figures
Products