1. Academic Validation
  2. Aristolactam BIII, a naturally derived DYRK1A inhibitor, rescues Down syndrome-related phenotypes

Aristolactam BIII, a naturally derived DYRK1A inhibitor, rescues Down syndrome-related phenotypes

  • Phytomedicine. 2021 Nov:92:153695. doi: 10.1016/j.phymed.2021.153695.
Miri Choi 1 Ae-Kyeong Kim 2 Youngwook Ham 3 Joo-Youn Lee 4 Daeyong Kim 3 Ansook Yang 1 Min Ju Jo 1 Eunyoung Yoon 4 Jung-Nyoung Heo 4 Sang-Bae Han 5 Min-Hyo Ki 6 Kyu-Sun Lee 2 Sungchan Cho 7
Affiliations

Affiliations

  • 1 Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, 30-1 Yeonje-ri, Osong-eup, Heungduk-gu, Cheongju-si, Chungbuk 28644, Republic of Korea.
  • 2 Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
  • 3 Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
  • 4 Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Jang-dong, Yuseong-gu, Daejeon 34114, Republic of Korea.
  • 5 College of Pharmacy, Chungbuk National University, 30-1 Yeonje-ri, Osong-eup, Heungduk-gu, Cheongju-si, Chungbuk 28644, Republic of Korea.
  • 6 Center Research Institute, Samjin Pharm. Co., Ltd., 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi 13488, Republic of Korea.
  • 7 Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea. Electronic address: sungchan@kribb.re.kr.
Abstract

Background: Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a significant pathogenic factor in Down syndrome (DS), wherein DYRK1A is overexpressed by 1.5-fold because of trisomy of human chromosome 21. Thus, DYRK1A inhibition is considered a therapeutic strategy to modify the disease.

Purpose: This study aims to identify a novel DYRK1A inhibitor and validate its therapeutic potential in DS-related pathological conditions.

Study design: In order to identify a novel DYRK1A inhibitor, we carried out two-step screening: a structure-based virtual screening of > 300,000 chemical library (first step) and cell-based nuclear factor of activated T-cells (NFAT)-response element (RE) promoter assay (second step). Primary hits were evaluated for their DYRK1A inhibitory activity using in vitro kinase assay and Tau phosphorylation in mammalian cells. Confirmed hit was further evaluated in pathological conditions including DYRK1A-overexpressing fibroblasts, flies, and mice.

Results: We identified aristolactam BIII, a natural product derived from herbal Plants, as a novel DYRK1A inhibitor. It potently inhibited the kinase activity of DYRK1A in vitro (IC50 = 9.67 nM) and effectively suppressed DYRK1A-mediated hyperphosphorylation of Tau in mammalian cells. Aristolactam BIII rescued the proliferative defects of DYRK1A transgenic (TG) mouse-derived fibroblasts and neurological and phenotypic defects of DS-like Drosophila models. Oral administration of aristolactam BIII acutely suppressed Tau hyperphosphorylation in the brain of DYRK1A TG mice. In the open field test, aristolactam BIII significantly ameliorated the exploratory behavioral deficit of DYRK1A TG mice.

Conclusion: Our work revealed that aristolactam BIII as a novel DYRK1A inhibitor rescues DS phenotypes in cells and in vivo and suggested its therapeutic potential for the treatment of DYRK1A-related diseases.

Keywords

Aristolactam BIII; DYRK1A; Down syndrome; Kinase; Small-molecule inhibitor.

Figures
Products