1. Academic Validation
  2. Bcl-xL Enforces a Slow-Cycling State Necessary for Survival in the Nutrient-Deprived Microenvironment of Pancreatic Cancer

Bcl-xL Enforces a Slow-Cycling State Necessary for Survival in the Nutrient-Deprived Microenvironment of Pancreatic Cancer

  • Cancer Res. 2022 May 16;82(10):1890-1908. doi: 10.1158/0008-5472.CAN-22-0431.
Yogev Sela  # 1 2 Jinyang Li  # 1 2 Shivahamy Maheswaran 1 2 Robert Norgard 1 2 Salina Yuan 1 2 Maimon Hubbi 1 2 Miriam Doepner 1 Jimmy P Xu 3 Elaine S Ho 3 Clementina Mesaros 3 Colin Sheehan 4 Grace Croley 4 Alexander Muir 4 Ian A Blair 3 Ophir Shalem 5 6 Chi V Dang 7 8 Ben Z Stanger 1 2
Affiliations

Affiliations

  • 1 Departments of Medicine and Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
  • 2 Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
  • 3 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
  • 4 Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois.
  • 5 Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
  • 6 Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
  • 7 Systems and Computational Biology Center and Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania.
  • 8 Ludwig Institute for Cancer Research, New York, New York.
  • # Contributed equally.
Abstract

Solid tumors possess heterogeneous metabolic microenvironments where oxygen and nutrient availability are plentiful (fertile regions) or scarce (arid regions). While Cancer cells residing in fertile regions proliferate rapidly, most Cancer cells in vivo reside in arid regions and exhibit a slow-cycling state that renders them chemoresistant. Here, we developed an in vitro system enabling systematic comparison between these populations via transcriptome analysis, metabolomic profiling, and whole-genome CRISPR screening. Metabolic deprivation led to pronounced transcriptional and metabolic reprogramming, resulting in decreased anabolic activities and distinct vulnerabilities. Reductions in anabolic, energy-consuming activities, particularly cell proliferation, were not simply byproducts of the metabolic challenge, but rather essential adaptations. Mechanistically, Bcl-xL played a central role in the adaptation to nutrient and oxygen deprivation. In this setting, Bcl-xL protected quiescent cells from the lethal effects of cell-cycle entry in the absence of adequate nutrients. Moreover, inhibition of Bcl-xL combined with traditional chemotherapy had a synergistic antitumor effect that targeted cycling cells. Bcl-xL expression was strongly associated with poor patient survival despite being confined to the slow-cycling fraction of human pancreatic Cancer cells. These findings provide a rationale for combining traditional Cancer therapies that target rapidly cycling cells with those that target quiescent, chemoresistant cells associated with nutrient and oxygen deprivation.

Significance: The majority of pancreatic Cancer cells inhabit nutrient- and oxygen-poor tumor regions and require Bcl-xL for their survival, providing a compelling antitumor metabolic strategy.

Figures
Products