1. Academic Validation
  2. Interleukin-17 governs hypoxic adaptation of injured epithelium

Interleukin-17 governs hypoxic adaptation of injured epithelium

  • Science. 2022 Jul 8;377(6602):eabg9302. doi: 10.1126/science.abg9302.
Piotr Konieczny  # 1 Yue Xing  # 1 Ikjot Sidhu 1 2 Ipsita Subudhi 1 Kody P Mansfield 1 Brandon Hsieh 1 Douglas E Biancur 3 Samantha B Larsen 4 Michael Cammer 5 Dongqing Li 6 Ning Xu Landén 6 Cynthia Loomis 7 Adriana Heguy 8 Anastasia N Tikhonova 9 Aristotelis Tsirigos 1 2 Shruti Naik 1 10
Affiliations

Affiliations

  • 1 Department of Pathology, New York University Langone Health, New York, NY 10016, USA.
  • 2 Applied Bioinformatics Laboratory, New York University Langone Health, New York, NY 10016, USA.
  • 3 Department of Radiation Oncology and Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
  • 4 Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
  • 5 Microscopy Laboratory, New York University Langone Health, New York, NY 10016, USA.
  • 6 Dermatology and Venereology Division, Department of Medicine, Solna Center for Molecular Medicine, Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, 17176 Stockholm, Sweden.
  • 7 Experimental Pathology Research Laboratory, New York University Langone Health, New York, NY 10016, USA.
  • 8 Genome Technology Center, New York University Langone Health, New York, NY 10016, USA.
  • 9 Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.
  • 10 Department of Medicine, Ronald O. Perelman Department of Dermatology, and Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
  • # Contributed equally.
Abstract

Mammalian cells autonomously activate hypoxia-inducible transcription factors (HIFs) to ensure survival in low-oxygen environments. We report here that injury-induced hypoxia is insufficient to trigger HIF1α in damaged epithelium. Instead, multimodal single-cell and spatial transcriptomics analyses and functional studies reveal that retinoic acid-related Orphan Receptor γt+ (RORγt+) γδ T cell-derived interleukin-17A (IL-17A) is necessary and sufficient to activate HIF1α. Protein kinase B (Akt) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling proximal of IL-17 Receptor C (IL-17RC) activates mammalian target of rapamycin (mTOR) and consequently HIF1α. The IL-17A-HIF1α axis drives glycolysis in wound front epithelia. Epithelial-specific loss of IL-17RC, HIF1α, or blockade of glycolysis derails repair. Our findings underscore the coupling of inflammatory, metabolic, and migratory programs to expedite epithelial healing and illuminate the immune cell-derived inputs in cellular adaptation to hypoxic stress during repair.

Figures
Products