1. Academic Validation
  2. Rational Development of a Small-Molecule Activator of CK1γ2 That Decreases C99 and Beta-Amyloid Levels

Rational Development of a Small-Molecule Activator of CK1γ2 That Decreases C99 and Beta-Amyloid Levels

  • ACS Chem Biol. 2023 Dec 11. doi: 10.1021/acschembio.3c00425.
Victor Hugo Bustos 1 Yashoda Krishna Sunkari 1 Anjana Sinha 1 Maria Pulina 1 Ashley Bispo 1 Maya Hopkins 1 Alison Lam 1 Sydney F Kriegsman 1 Emily Mui 1 Emily Chang 1 Ana Jedlicki 1 Hannah Rosenthal 1 Marc Flajolet 1 Subhash C Sinha 1
Affiliations

Affiliation

  • 1 Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States.
Abstract

Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the accumulation of β-amyloid (Aβ), C99, and Tau in vulnerable areas of the brain. Despite extensive research, current strategies to lower Aβ levels have shown limited efficacy in slowing the cognitive decline associated with AD. Recent findings suggest that C99 may also play a crucial role in the pathogenesis of AD. Our laboratory has discovered that CK1γ2 phosphorylates Presenilin 1 at the γ-secretase complex, leading to decreased C99 and Aβ levels. Thus, CK1γ2 activation appears as a promising therapeutic target to lower both C99 and Aβ levels. In this study, we demonstrate that CK1γ2 is inhibited by intramolecular autophosphorylation and describe a high-throughput screen designed to identify inhibitors of CK1γ2 autophosphorylation. We hypothesize that these inhibitors could lead to CK1γ2 activation and increased PS1-Ser367 phosphorylation, ultimately reducing C99 and Aβ levels. Using cultured cells, we investigated the impact of these compounds on C99 and Aβ concentrations and confirmed that CK1γ2 activation effectively reduced their levels. Our results provide proof of concept that CK1γ2 is an attractive therapeutic target for AD. Future studies should focus on the identification of specific compounds that can inhibit CK1γ2 autophosphorylation and evaluate their efficacy in preclinical models of AD. These studies will pave the way for the development of novel therapeutics for the treatment of AD.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-162043
    CK1γ2 激动剂