1. Academic Validation
  2. Rational Search for Betaine/GABA Transporter 1 Inhibitors─ In Vitro Evaluation of Selected Hit Compound

Rational Search for Betaine/GABA Transporter 1 Inhibitors─ In Vitro Evaluation of Selected Hit Compound

  • ACS Chem Neurosci. 2024 Oct 19. doi: 10.1021/acschemneuro.4c00425.
Kamil Łątka 1 Stefanie Kickinger 2 Zuzanna Rzepka 3 Paula Zaręba 1 Gniewomir Latacz 4 Agata Siwek 5 Małgorzata Wolak 5 Dorota Stary 1 Monika Marcinkowska 6 Petrine Wellendorph 2 Dorota Wrześniok 3 Marek Bajda 1
Affiliations

Affiliations

  • 1 Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
  • 2 Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
  • 3 Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
  • 4 Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
  • 5 Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
  • 6 Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
Abstract

Inhibitory neurotransmission mediated by γ-aminobutyric acid (GABA) plays an important role in maintaining body homeostasis. Disturbances in GABA signaling are implicated in a multitude of neurologic and psychiatric conditions, including epilepsy, ischemia, anxiety, depression, insomnia, and mood disorders. Clinically relevant increases in GABA neurotransmitter level can be achieved by inhibition of its uptake into presynaptic neurons and surrounding glial cells, driven by GABA transporters (GAT1, BGT1, GAT2, and GAT3). Herein, we focused on the search for inhibitors of the BGT1 transporter which is understudied and for which the therapeutic potential of its inhibition is partly unknown. We applied multilevel virtual screening to identify compounds with inhibitory properties. Among selected hits, compound 9 was shown to be a preferential inhibitor of BGT1 (IC50 13.9 μM). The compound also revealed some inhibitory activity against GAT3 (4x lower) while showing no or low activity (IC50 > 100 μM) toward GAT1 and GAT2, respectively. The predicted binding mode of compound 9 was confirmed by mutagenesis studies on E52A, E52Y, Q299L, and E52A+Q299L human BGT1 mutants. Subsequent evaluation showed that the selected hit displayed no affinity toward major GABAA receptor subtypes. Moreover, it was nontoxic when tested on normal human astrocytes and even showed some neuroprotective activity in SH-SY5Y cells. Compound 9 is considered a promising candidate for further evaluation of the therapeutic potential of BGT1 transporter inhibition and the development of novel inhibitors.

Keywords

betaine/GABA transporter 1; biological evaluation; inhibitor; rigid GABA analogue; virtual screening.

Figures
Products