1. Academic Validation
  2. Mitochondrial metabolism and epigenetic crosstalk drive the SASP

Mitochondrial metabolism and epigenetic crosstalk drive the SASP

  • Res Sq. 2024 Dec 5:rs.3.rs-5278203. doi: 10.21203/rs.3.rs-5278203/v1.
Joao Passos 1 Helene Martini 1 Jodie Birch 2 Francisco Marques 3 Stella Victorelli 1 Anthony Lagnado 1 Nicholas Pirius 1 Ana Franco 1 Gung Lee 1 Yeaeun Han 1 Jennifer Rowsey 1 Alexandre Gaspar-Maia 1 Aaron Havas 4 Rabi Murad 5 Xue Lei 6 Rebecca Porritt 4 Oliver Maddocks 7 Diana Jurk 1 Sundeep Khosla 1 Peter Adams 4
Affiliations

Affiliations

  • 1 Mayo Clinic.
  • 2 MRC London Institute of Medical Sciences.
  • 3 Albert Einstein College of Medicine.
  • 4 Sanford Burnham Prebys Medical Discovery Institute.
  • 5 University of California, Irvine.
  • 6 Sanford Burnham Prebys MDI.
  • 7 Faeth Therapeutics.
Abstract

Senescent cells drive tissue dysfunction through the senescence-associated secretory phenotype (SASP). We uncovered a central role for mitochondria in the epigenetic regulation of the SASP, where mitochondrial-derived metabolites, specifically citrate and acetyl-CoA, fuel histone acetylation at SASP gene loci, promoting their expression. We identified the mitochondrial citrate carrier (SLC25A1) and ATP-citrate lyase (ACLY) as critical for this process. Inhibiting these pathways selectively suppresses SASP without affecting cell cycle arrest, highlighting their potential as therapeutic targets for age-related inflammation. Notably, SLC25A1 inhibition reduces systemic inflammation and extends healthspan in aged mice, establishing Mitochondrial Metabolism as pivotal to the epigenetic control of aging.

Figures
Products