1. Academic Validation
  2. Disruption of oncogenic K-Ras4B processing and signaling by a potent geranylgeranyltransferase I inhibitor

Disruption of oncogenic K-Ras4B processing and signaling by a potent geranylgeranyltransferase I inhibitor

  • J Biol Chem. 1995 Nov 10;270(45):26770-3. doi: 10.1074/jbc.270.45.26770.
E C Lerner 1 Y Qian A D Hamilton S M Sebti
Affiliations

Affiliation

  • 1 Department of Pharmacology, School of Medicine, University of Pittsburgh, Pennsylvania 15261, USA.
Abstract

Prenylation of the carboxyl-terminal CAAX (C, cysteine; A, aliphatic acid; and X, any amino acid) of Ras is required for its biological activity. We have designed a CAAX peptidomimetic, GGTI-287, which is 10 times more potent toward inhibiting geranylgeranyltransferase I (GGTase I) in vitro (IC50 = 5 nM) than our previously reported farnesyltransferase inhibitor, FTI-276. In whole cells, the methyl ester derivative of GGTI-287, GGTI-286, was 25-fold more potent (IC50 = 2 microM) than the corresponding methyl ester of FTI-276, FTI-277, toward inhibiting the processing of the geranylgeranylated protein Rap1A. Furthermore, GGTI-286 is highly selective for geranylgeranylation over farnesylation since it inhibited the processing of farnesylated H-Ras only at much higher concentrations (IC50 > 30 microM). While the processing of H-Ras was very sensitive to inhibition by FTI-277 (IC50 = 100 nM), that of K-Ras4B was highly resistant (IC50 = 10 microM). In contrast, we found the processing of K-Ras4B to be much more sensitive to GGTI-286 (IC50 = 2 microM). Furthermore, oncogenic K-Ras4B stimulation inhibited potently by GGTI-286 (IC50 = 1 microM) but weakly by FTI-277 (IC50 = 30 microM). Significant inhibition of oncogenic K-Ras4B stimulation of MAP kinase by GGTI-286 occurred at concentrations (1-3 microM) that did not inhibit oncogenic H-Ras stimulation of MAP kinase. The data presented in this study provide the first demonstration of selective disruption of oncogenic K-Ras4B processing and signaling by a CAAX peptidomimetic. The higher sensitivity of K-Ras4B toward a GGTase I inhibitor has a tremendous impact on future research directions targeting Ras in Anticancer therapy.

Figures
Products