1. Signaling Pathways
  2. Cell Cycle/DNA Damage
    Epigenetics
  3. HDAC

HDAC (组蛋白去乙酰化酶)

Histone deacetylases

HDAC(组蛋白去乙酰化酶)是一类酶,可从组蛋白上的 ε-N-乙酰赖氨酸氨基酸中去除乙酰基(O=C-CH3),使组蛋白能够更紧密地包裹 DNA。这很重要,因为 DNA 包裹在组蛋白周围,而 DNA 表达受乙酰化和去乙酰化的调控。其作用与组蛋白乙酰转移酶相反。HDAC 蛋白现在也称为赖氨酸去乙酰化酶 (KDAC),以描述其功能而不是其靶标,其中还包括非组蛋白。组蛋白去乙酰化酶与乙酰多胺酰胺水解酶和乙偶姻利用蛋白一起形成了一个古老的蛋白质超家族,称为组蛋白去乙酰化酶超家族。

HDAC (Histone deacetylases) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on ahistone, allowing the histones to wrap the DNA more tightly. This is important because DNA is wrapped around histones, and DNA expression is regulated by acetylation and de-acetylation. Its action is opposite to that of histone acetyltransferase. HDAC proteins are now also called lysine deacetylases (KDAC), to describe their function rather than their target, which also includes non-histone proteins. Together with the acetylpolyamine amidohydrolases and the acetoin utilization proteins, the histone deacetylases form an ancient protein superfamily known as the histone deacetylase superfamily.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-155697
    SGC-UBD253 Antagonist 99.3%
    SGC-UBD253 是一种有效的 HDAC6-UBD 拮抗剂。SGC-UBD253 可用于癌症研究。
    SGC-UBD253
  • HY-10528S
    Tasquinimod-d3 Modulator 99.34%
    Tasquinimod-d3 (ABR-215050-d3) 是 Tasquinimod (HY-10528) 氘代标记同位素。Tasquinimod 是一种口服抗血管生成剂,在抗性前列腺癌的研究中发挥重要作用。Tasquinimod 与 HDAC4 Zn2+ 结合结构域结合的 Kd 值为 10-30 nM。Tasquinimod 也是一种 S100A9 抑制剂。
    Tasquinimod-d<sub>3</sub>
  • HY-B0350S1
    Butyric acid-13C-1

    丁酸-13C-1

    Inhibitor 99.4%
    Butyric acid-13C-1 是 13C 标记的 Butyric acid。Butyric acid 是一种 HDAC 抑制剂,具有抗肿瘤活性。
    Butyric acid-<sup>13</sup>C-1
  • HY-119017
    SB-429201 Inhibitor 98.15%
    SB-429201 是一种有效的选择性 HDAC1 (IC50~1.5 μM)。SB-429201 对 HDAC1 抑制的偏好至少是 HDAC3HDAC8 的 20 倍。
    SB-429201
  • HY-18947
    SKLB-23bb Inhibitor ≥98.0%
    SKLB-23bb 是一种有效的选择性 HDAC6 抑制剂,IC50 为 17 nM,比抑制 HDAC1 (IC50= 422 nM) 和 HDAC8 (IC50=3398 nM) 选择性分别高 25 倍和 200 倍。
    SKLB-23bb
  • HY-156274
    HDAC6-IN-23 Inhibitor 99.61%
    HDAC6-IN-23 (compound 9) 是一种具有口服活性的 HDAC6 抑制剂。
    HDAC6-IN-23
  • HY-14718
    Resminostat Inhibitor 99.84%
    Resminostat (RAS2410; 4SC-201) 是一种有效的 HDAC1HHDAC3HDAC6 抑制剂,IC50 值分别为 42.5,50.1,71.8 nM,同时对 HDAC8 有较弱的抑制作用,IC50 值为 877 nM。
    Resminostat
  • HY-160092A
    Martinostat hydrochloride Inhibitor 99.01%
    Martinostat hydrochloride 是一种 HDAC 抑制剂,可用放射性核素标记用于体内中枢神经系统和主要外周器官中 HDACs 的定量成像。
    Martinostat hydrochloride
  • HY-16138A
    Ivaltinostat formic Inhibitor 98.26%
    Ivaltinostat (CG-200745) formic 是一种口服有效的泛 HDAC 抑制剂,具有异羟肟酸部分,可在催化袋底部结合锌。Ivaltinostat formic 抑制组蛋白 H3 和微管蛋白的脱乙酰作用。Ivaltinostat formic 诱导 p53 的积累,促进 p53 依赖性反式激活,并增强 MDM2 和 p21 (Waf1/Cip1) 蛋白的表达。Ivaltinostat formic 可增强 Gemcitabine 耐药细胞对 Gemcitabine (HY-16138) 和 5-Fluorouracil (5-FU; HY-90006) 的敏感性。Ivaltinostat formic 诱导凋亡并具有抗肿瘤作用。
    Ivaltinostat formic
  • HY-100384
    NKL 22 Inhibitor
    NKL 22 (化合物 4b) 是一种有效的选择性组蛋白脱乙酰基酶 (HDAC) 抑制剂,抑制 HDAC1HDAC3IC50 值分别为 199 和 69 nM。NKL 22 对 HDAC2/4/5/7/8 (IC50≥1.59 μM) 具有选择性。NKL 22 改善了亨廷顿氏病转基因小鼠的疾病表型和转录异常。
    NKL 22
  • HY-10585S1
    Valproic acid-d6

    丙戊酸 d6

    Inhibitor 98.71%
    Valproic acid-d6 是 Valproic acid 的氘代物。Valproic acid (VPA; 2-Propylpentanoic Acid) 是一种 HDAC 抑制剂,IC50 值为 0.5-2 mM,抑制 HDAC1 的活性,(IC50,400 μM),同时可诱导 HDAC2 的降解。Valproic acid 激活 Notch1 信号并抑制小细胞肺癌 (SCLC) 细胞的增殖。Valproic acid 可用于癫痫、双相情感障碍和偏头痛等的研究。
    Valproic acid-d<sub>6</sub>
  • HY-146153
    HDAC-IN-40 Inhibitor 98.71%
    HDAC-IN-40 是一种有效的基于烷氧基酰胺的 HDAC 抑制剂,对 HDAC2HDAC6Ki 值分别为 60 nM 和 30 nM。HDAC-IN-40 具有抗肿瘤作用。
    HDAC-IN-40
  • HY-120508
    Pivanex Inhibitor
    Pivanex (AN-9) 是丁酸的衍生物,是口服有效的 HDAC 抑制剂。Pivanex 可下调 bcr-abl 蛋白,增强凋亡 (apoptosis)。Pivanex 具有抗转移和抗血管生成的活性
    Pivanex
  • HY-149966
    PB131 Inhibitor 99.03%
    PB131 是一种选择性的,可穿透大脑屏障的 HDAC6 抑制剂,具有高结合亲和力 (IC50: 1.8 nM)。PB131 具有有效的抗炎活性。PB131可用于炎症尤其是神经炎症的研究。
    PB131
  • HY-149766
    PB94 Inhibitor
    PB94 是选择性 HDAC11 抑制剂 (IC50=108 nM)。PB94 可被放射性标记为 [11C]-PB94,用于正电子发射断层扫描 (PET),以及给药活体动物的脑摄取和代谢特性。PB94 改善了小鼠的神经性疼痛,可用于神经系统适应症的研究。
    PB94
  • HY-117583
    cis-BG47 Inhibitor 98.02%
    cis-BG47 是 BG47 的顺式异构体,BG47 是一种典型的组蛋白脱乙酰酶 HDAC1HDAC2 选择性光表观遗传学探针,在光诱导的反式-顺式异构化时能与 HDAC 靶点结合并竞争性抑制其脱乙酰酶活性,增加组蛋白甲基转移酶 (Histone Methyltransferase) H3K9 乙酰化。cis-BG47 可用于神经性疾病研究。
    cis-BG47
  • HY-124053
    BRD2492 Inhibitor 99.18%
    BRD2492 (compound 6d) 是一种有效的选择性 HDAC1HDAC2 抑制剂,IC50 分别为 13.2 nM 和 77.2 nM。BRD2492 对 HDAC1/2 的选择性是 HDAC3HDAC6 的 100 倍以上。BRD2492 抑制乳腺癌细胞系生长,对于 T-47D 和 MCF-7 细胞的 IC50 分别为 1.01 μM 和 11.13 μM。
    BRD2492
  • HY-145815A
    JPS014 TFA Degrader 98.40%
    JPS014 TFA 是一种基于苯甲酰胺的 Von Hippel-Lindau (VHL) E3-连接酶蛋白水解靶向嵌合体 (PROTAC)。JPS014 TFA 降解 I 类组蛋白脱乙酰酶 (HDAC)。JPS014 TFA 是一种有效的 HDAC1/2 降解剂,与 HCT116 细胞中更大的总差异表达基因和增强的细胞凋亡 (apoptosis) 相关。
    JPS014 TFA
  • HY-146346
    HD-TAC7 Inhibitor 98.75%
    HD-TAC7 是一种有效的 PROTAC HDAC 降解剂,对 HDAC1、HDAC2 和 HDAC3IC50 分别为 3.6 μM、4.2 μM 和 1.1 μM。HD-TAC7 可降低 RAW 264.7 巨噬细胞 NF-κB p65 表达。HD-TAC7 可用于哮喘和慢性阻塞性肺病(COPD)等炎症性疾病的研究。
    HD-TAC7
  • HY-B0246R
    Carbamazepine (Standard)

    卡马西平(Standard)

    Inhibitor
    Carbamazepine (Standard)是 Carbamazepine 的分析标准品。本产品用于研究及分析应用。Carbamazepine 是一种具有口服活性的压敏钠离子通道阻断剂,IC50 为 131 μM。Carbamazepine 可阻断电压门控 Na+、Ca2+ 和 K+ 通道,也是一种 HDAC 抑制剂 (IC50: 2 μM)。Carbamazepine 是一种抗惊厥试剂,可用于癫痫和神经性疼痛的研究。
    Carbamazepine (Standard)
目录号 产品名 / 同用名 应用 反应物种

TCR, GPCR and HDAC II interaction: Diverse agonists act through G-protein-coupled receptors (GPCRs) to activate the PKC-PKD axis, CaMK, Rho, or MHC binding to antigens stimulates TCR to activate PKD, leading to phosphorylation of class II HDACs. Phospho-HDACs dissociate from MEF2, bind 14-3-3, and are exported to the cytoplasm through a CRM1-dependent mechanism. CRM1 is inhibited by leptomycin B (LMB). Release of MEF2 from class II HDACs allows p300 to dock on MEF2 and stimulate gene expression. Dephosphorylation of class II HDACs in the cytoplasm enables reentry into the nucleus[1].

 

TLR: TLR signaling is initiated by ligand binding to receptors. The recruitment of TLR domain-containing adaptor protein MyD88 is repressed by HDAC6, whereas NF-κB and MTA-1 can be negatively regulated by HDAC1/2/3 and HDAC2, respectively. Acetylation by HATs enhance MKP-1 which inhibits p38-mediated inflammatory responses, while HDAC1/2/3 inhibits MKP-1 activity. HDAC1 and HDAC8 repress, whereas HDAC6 promotes, IRF function in response to viral challenge. HDAC11 inhibits IL-10 expression and HDAC1 and HDAC2 represses IFNγ-dependent activation of the CIITA transcription factor, thus affecting antigen presentation[2][3].

 

IRNAR: IFN-α/β induce activation of the type I IFN receptor and then bring the receptor-associated JAKs into proximity. JAK adds phosphates to the receptor. STATs bind to the phosphates and then phosphorylated by JAKs to form a dimer, leading to nuclear translocation and gene expression. HDACs positively regulate STATs and PZLF to promote antiviral responses and IFN-induced gene expression[2][3].

 

Cell cycle: In G1 phase, HDAC, Retinoblastoma protein (RB), E2F and polypeptide (DP) form a repressor complex. HDAC acts on surrounding chromatin, causing it to adopt a closed chromatin conformation, and transcription is repressed. Prior to the G1-S transition, phosphorylation of RB by CDKs dissociates the repressor complex. Transcription factors (TFs) gain access to their binding sites and, together with the now unmasked E2F activation domain. E2F is then free to activate transcription by contacting basal factors or by contacting histone acetyltransferases, such as CBP, that can alter chromatin structure[4].

 

The function of non-histone proteins is also regulated by HATs/HDACs. p53: HDAC1 impairs the function of p53. p53 is acetylated under conditions of stress or HDAC inhibition by its cofactor CREB binding protein (CBP) and the transcription of genes involved in differentiation is activated. HSP90: HSP90 is a chaperone that complexes with other chaperones, such as p23, to maintain correct conformational folding of its client proteins. HDAC6 deacetylates HSP90. Inhibition of HDAC6 would result in hyperacetylated HSP90, which would be unable to interact with its co-chaperones and properly lead to misfolded client proteins being targeted for degradation via the ubiquitin-proteasome system[5][6].
 

Reference:

[1]. Vega RB, et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5.Mol Cell Biol. 2004 Oct;24(19):8374-85.
[2]. Shakespear MR, et al. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 2011 Jul;32(7):335-43.
[3]. Suliman BA, et al. HDACi: molecular mechanisms and therapeutic implications in the innate immune system.Immunol Cell Biol. 2012 Jan;90(1):23-32. 
[4]. Brehm A, et al. Retinoblastoma protein meets chromatin.Trends Biochem Sci. 1999 Apr;24(4):142-5.
[5]. Butler R, et al. Histone deacetylase inhibitors as therapeutics for polyglutamine disorders.Nat Rev Neurosci. 2006 Oct;7(10):784-96
[6]. Minucci S, et al. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer.Nat Rev Cancer. 2006 Jan;6(1):38-51.

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.