1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. mTOR

mTOR (哺乳动物雷帕霉素靶蛋白)

Mammalian target of Rapamycin

mTOR (mammalian target of Rapamycin) is a protein that in humans is encoded by the mTOR gene. mTOR is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. mTOR belongs to the phosphatidylinositol 3-kinase-related kinase protein family. mTOR integrates the input from upstream pathways, including growth factors and amino acids. mTOR also senses cellular nutrient, oxygen, and energy levels. The mTOR pathway is dysregulated in human diseases, such as diabetes, obesity, depression, and certain cancers. Rapamycin inhibits mTOR by associating with its intracellular receptor FKBP12. The FKBP12-rapamycin complex binds directly to the FKBP12-Rapamycin Binding (FRB) domain of mTOR, inhibiting its activity.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-115869
    RMC-4529 Inhibitor
    RMC-4529 在 mTOR 激酶细胞实验中,对 p-4E-BP1-(T37/46) 的 IC50 值为 1.0 nM。
    RMC-4529
  • HY-127067
    Yuanhuadin Inhibitor
    Yuanhuadin 提取自芫花 Daphne genkwa,通过抑制 Akt/mTOREGFR 通路具有抗肿瘤活性,同时也可以诱导细胞周期停滞和流产。
    Yuanhuadin
  • HY-156027
    SIRT6-IN-3 Inhibitor
    SIRT6-IN-3 (compound 8a) 是 SIRT6 的选择性抑制剂 (IC50 为 7.49 μM)。SIRT6-IN-3 抑制胰腺导管腺癌 (PDAC) 细胞增殖并诱导细胞凋亡 (apoptosis)。SIRT6-IN-3 通过阻止 DNA 损伤修复来增加吉西他滨 (HY-17026) 对癌细胞的敏感性。SIRT6-IN-3 用于胰腺癌研究。
    SIRT6-IN-3
  • HY-125535
    OSU-53 Inhibitor
    OSU-53 是一种口服有效的 AMPK 激活剂 (EC50: 0.3 μM),同时也是一种直接的 mTOR 抑制剂。OSU-53 诱导自噬 (Autophagy) 并增加 LC3 I 转化为 LC3 II 的比例。OSU-53 还通过抑制脂肪酸生物合成,增强 PGC1α 和 NRF-1 的表达,从而调节能量稳态,将代谢转向氧化。OSU-53 在多种肿瘤模型中显示出抗肿瘤活性,如乳腺癌和甲状腺癌。
    OSU-53
  • HY-146200
    PI3K/mTOR Inhibitor-8 Inhibitor
    PI3K/mTOR Inhibitor-8 (Compound 18b) 是一种 PI3KmTOR 双重抑制剂,对 PI3KαmTORIC50 分别为 0.46 nM 和 12 nM。PI3K/mTOR Inhibitor-8 诱导 HCT-116 细胞凋亡 (apoptosis),在 G1/S 期阻滞细胞周期。
    PI3K/mTOR Inhibitor-8
  • HY-151915
    ATR-IN-20 Inhibitor
    ATR-IN-20 是一种有效的 ATR (ATM/ATR) 抑制剂,IC50 为 3 nM。ATR-IN-20 对 mTOR 具有抑制作用 (IC50 为 18 nM),同时对 PI3Kα (100 nM)、ATM (100 nM) 和 DNA-PK (662 nM) 显示出良好的选择性。ATR-IN-20 具有出色的药代动力学特征 (F = 30%),并具有抗癌作用。
    ATR-IN-20
  • HY-159517
    PI3K/Akt/mTOR-IN-5 Inhibitor
    PI3K/Akt/mTOR-IN-5 (compound D3) 是一种 Pseudolaric Acid B (HY-N6939) 的衍生物,具有抗肿瘤活性。PI3K/Akt/mTOR-IN-5 通过 PI3K/AKT/mTORSTAT3/GPX4 途径抑制肿瘤细胞的过度增殖。此外,PI3K/Akt/mTOR-IN-5 有效抑制 EDU 阳性率,减少集落形成,使 HCT-116 细胞处于 S 期和 G2/M 期,诱导细胞凋亡 (apoptosis)。
    PI3K/Akt/mTOR-IN-5
  • HY-P10323
    T7 Peptide Inhibitor
    T7 Peptide 是内皮细胞特异性抑制剂。T7 Peptide 通过与 αVβ3 整合素相互作用,抑制内皮细胞的 FAKPI3-kinasePKB/AktmTOR 信号通路,从而抑制蛋白质合成并诱导细胞凋亡。
    T7 Peptide
  • HY-10218R
    Everolimus (Standard)

    依维莫司 (标准品)

    Inhibitor
    Everolimus (Standard) 是 Everolimus 的分析标准品。本产品用于研究及分析应用。 Everolimus (RAD001) 是一种雷帕霉素 (Rapamycin; HY-10219) 的衍生物,也是一种有效的,选择性的和口服活性的 mTOR1 抑制剂。Everolimus 与 FKBP-12 结合可产生免疫抑制复合物。Everolimus 抑制肿瘤细胞增殖并诱导细胞凋亡 (apoptosis) 和自噬 (autophagy)。Everolimus 具有有效的免疫抑制和抗癌活性。
    Everolimus (Standard)
  • HY-N1244
    Sarmentosin Inhibitor
    Sarmentosin 是 Nrf2 的激活剂。Sarmentosin 抑制人肝癌细胞的 mTOR 信号通路,诱导自噬依赖性细胞凋亡。
    Sarmentosin
  • HY-159577
    Nic-15 Modulator
    Nic-15 (compound 4n) 是用于拮抗胰腺肿瘤低血管特性的抗紧缩剂。低血管特性使癌细胞适应营养缺乏的肿瘤微环境,产生耐药性。Nic-15 能够调节 PI3K/Akt/mTOR 通路,同时缓解 Gemcitabine (HY-17026) 诱导的 ER 应激。Nic-15 可显著抑制 MIA PaCa-2 和 PANC-1 胰腺癌细胞迁移和集落形成,Nic-15 与 Gemcitabine 联合使用可有效解决胰腺肿瘤耐药性的问题。在体内异种移植模型中,Nic-15 能够显著增强 Gemcitabine 的疗效。
    Nic-15
  • HY-147613
    PI3K/mTOR Inhibitor-6 Inhibitor
    PI3K/mTOR Inhibitor-6 (Compound 19c) 是一种有效的 PI3K/mTOR 双重抑制剂。PI3K/mTOR Inhibitor-6 在人工胃液中的稳定性优于 gedatolisib。PI3K/mTOR Inhibitor-6 在 10 μM 时显着抑制 PI3K/Akt/mTOR 信号通路。PI3K/mTOR Inhibitor-6具有研究癌症疾病的潜力。
    PI3K/mTOR Inhibitor-6
  • HY-159480
    AD1058 Inhibitor
    AD1058 是一种具有口服活性、选择性和血脑屏障通透性的 ATR 抑制剂 (IC50 = 1.6 nM)。AD1058 具有体内抗癌活性,能抑制细胞增殖、破坏细胞周期和诱导细胞凋亡 (Apoptosis)。AD1058 可以用于晚期实体瘤引起的脑和中枢神经系统转移的研究。
    AD1058
  • HY-N6950R
    Hederacolchiside A1 (Standard)

    革叶常春藤皂苷 A1 (Standard)

    Modulator
    Hederacolchiside A1 (Standard) 是 Hederacolchiside A1 的分析标准品。本产品用于研究及分析应用。Hederacolchiside A1 是从白头翁中分离的,通过调节 PI3K/Akt/mTOR 信号通路诱导凋亡,从而抑制肿瘤细胞的增殖。Hederacolchiside A1 具有抗血吸虫病活性,影响体内和体外的寄生虫生存力。
    Hederacolchiside A1 (Standard)
  • HY-156432
    ALK-IN-26 Inhibitor 99.87%
    ALK-IN-26 (compound 4a) 是 ALK 抑制剂,对 ALK 酪氨酸激酶的 IC50 值为7.0 μM。ALK-IN-26 有良好的药代动力学特性和血脑屏障通透性。ALK-IN-26 能够引起细胞凋亡、自噬和坏死。ALK-IN-26 能够用于胶质母细胞瘤研究。
    ALK-IN-26
  • HY-N6626R
    Pyraclostrobin (Standard)

    吡唑醚菌酯 (标准品)

    Pyraclostrobin (Standard) 是 Pyraclostrobin 的分析标准品。本产品用于研究及分析应用。 Pyraclostrobin 是一种高效广谱的杀菌剂,Pyraclostrobin 可通过激活 AMPK/mTOR 信号通路诱导 DNA 氧化损伤、线粒体功能障碍和自噬 (autophagy)。Pyraclostrobin 可用于控制农作物病害。
    Pyraclostrobin (Standard)
  • HY-156445
    PI3K/mTOR Inhibitor-14 Inhibitor
    PI3K/mTOR Inhibitor-14(化合物 Y-2)是一种有效的 PI3KmTOR 双重抑制剂,IC50 分别为 171.4 nM 和 10.1 nM。PI3K/mTOR Inhibitor-14 具有抗肿瘤活性。
    PI3K/mTOR Inhibitor-14
  • HY-147966
    HDAC-IN-43 Inhibitor
    HDAC-IN-43是一种强效的HDAC 1/3/6 抑制剂,IC50 值分别为82、45和24 nM。HDAC-IN-43是一种弱的PI3K/mTOR抑制剂,IC50 值分别为3.6 和 3.7 μM。HDAC-IN-43具有广谱的抗增殖活性。
    HDAC-IN-43
  • HY-144295
    PI3Kα-IN-5 Inhibitor
    PI3Kα-IN-5 (compound 6 ab) 是一种有效的 PI3Kα/mTOR 抑制剂,IC50 值分别为 0.7 nM 和 3.3 nM。PI3Kα-IN-5 可用于结直肠癌的研究。
    PI3Kα-IN-5
  • HY-144449
    mTOR/HDAC6-IN-1 Inhibitor
    mTOR/HDAC6-IN-1 是一种有效的哺乳动物雷帕霉素 (mTOR) 和组蛋白去乙酰酶 (HDAC6) 的双重抑制剂 (mTORHDAC6IC50s 分别为 133.7 nM 和 56 nM)。mTOR/HDAC6-IN-1 可诱导明显的细胞自噬 (autophagy)、细胞凋亡 (apoptosis),以及抑制迁移。mTOR/HDAC6-IN-1 具有研究三阴性乳腺癌 (TNBC) 的潜力。
    mTOR/HDAC6-IN-1
目录号 产品名 / 同用名 应用 反应物种

The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation and survival[1]. mTOR is the catalytic subunit of two distinct complexes called mTORC1 and mTORC2. mTORC1 comprises DEPTOR, PRAS40, RAPTOR, mLST8, mTOR, whereas mTORC2 comprises DEPTOR, mLST8, PROTOR, RICTOR, mSIN1, mTOR[2]. Rapamycin binds to FKBP12 and inhibits mTORC1 by disrupting the interaction between mTOR and RAPTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1 and TFEB. mTORC1 promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1, and regulates glycolysis through HIF-1α. It promotes de novo lipid synthesis through the SREBP transcription factors. mTORC2 inhibits FOXO1,3 through SGK and Akt, which can lead to increased longevity. The complex also regulates actin cytoskeleton assembly through PKC and Rho kinase[3]

 

Growth factors: Growth factors can signal to mTORC1 through both PI3K-Akt and Ras-Raf-MEK-ERK axis. For example, ERK and RSK phosphorylate TSC2, and inhibit it.

 

Insulin Receptor: The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of these proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt and triggers the Akt-dependent multisite phosphorylation of TSC2. TSC is a heterotrimeric complex comprised of TSC1, TSC2, and TBC1D7, and functions as a GTPase activating protein (GAP) for the small GTPase Rheb, which directly binds and activates mTORC1. mTORC2 primarily functions as an effector of insulin/PI3K signaling. 

 

Wnt: The Wnt pathway activates mTORC1. Glycogen synthase kinase 3β (GSK-3β) acts as a negative regulator of mTORC1 by phosphorylating TSC2. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1[4].

 

Amino acids: mTORC1 senses both lysosomal and cytosolic amino acids through distinct mechanisms. Amino acids induce the movement of mTORC1 to lysosomal membranes, where the Rag proteins reside. A complex named Ragulator, interact with the Rag GTPases, recruits them to lysosomes through a mechanism dependent on the lysosomal v-ATPase, and is essential for mTORC1 activation. In turn, lysosomal recruitment enables mTORC1 to interact with GTP-bound RHEB, the end point of growth factor. Cytosolic leucine and arginine signal to mTORC1 through a distinct pathway comprised of the GATOR1 and GATOR2 complexes.    

 

Stresses: mTORC1 responds to intracellular and environmental stresses that are incompatible with growth such as low ATP levels, hypoxia, or DNA damage. A reduction in cellular energy charge, for example during glucose deprivation, activates the stress responsive metabolic regulator AMPK, which inhibits mTORC1 both indirectly, through phosphorylation and activation of TSC2, as well as directly through the phosphorylation of RAPTOR. Sestrin1/2 are two transcriptional targets of p53 that are implicated in the DNA damage response, and they potently activate AMPK, thus mediating the p53-dependent suppression of mTOR activity upon DNA damage. During hypoxia, mitochondrial respiration is impaired, leading to low ATP levels and activation of AMPK. Hypoxia also affects mTORC1 in AMPK-independent ways by inducing the expression of REDD1, the protein products of which then suppress mTORC1 by promoting the assembly of TSC1-TSC2[2].

 

Reference:

[1]. Laplante M, et al.mTOR signaling at a glance.J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94. 
[2]. Zoncu R, et al. mTOR: from growth signal integration to cancer, diabetes and ageing.Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35. 
[3]. Johnson SC, et al. mTOR is a key modulator of ageing and age-related disease.Nature. 2013 Jan 17;493(7432):338-45.
[4]. Shimobayashi M, et al. Making new contacts: the mTOR network in metabolism and signalling crosstalk.Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62.

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.