1. Academic Validation
  2. Fluid pressure in human dermal fibroblast aggregates measured with micropipettes

Fluid pressure in human dermal fibroblast aggregates measured with micropipettes

  • Am J Physiol Cell Physiol. 2003 Nov;285(5):C1101-8. doi: 10.1152/ajpcell.00050.2003.
L E B Stuhr 1 A Reith S Lepsøe R Myklebust H Wiig R K Reed
Affiliations

Affiliation

  • 1 Department of Physiology, University of Bergen, Jonas Liesv. 91, N-5009 Bergen, Norway. linda.stuhr@fys.uib.no
Abstract

Previous studies indicated that connective tissue cells in dermis are involved in control of interstitial fluid pressure (Pif). We wanted to develop and characterize an in vitro model representative of loose connective tissue to study dynamic changes in fluid pressure (Pf) over a time course of a few minutes. Pf was measured with micropipettes in human dermal fibroblast cell aggregates of varying size (<100- and >100-microm diameter) and age (days 1-4) kept at different temperatures (approximately 15, 25, and 35 degrees C). Pressures were measured at different depths of micropipette penetration and after treatment with prostaglandin E1 isopropyl ester (PGE1), latanoprost (PGF2alpha), and ouabain. Pf was positive (more than +2 mmHg) during control conditions and increased with increasing aggregate size (day 2), age (day 4 vs. day 1), temperature, and depth of micropipette penetration. Pf decreased from 2.9 to 2.0 mmHg during the first 10 min after application of 10 microl of 1 mM PGE1 (P < 0.001). Pf increased from 3.0 to 4.8 mmHg (P < 0.01) after administration of 10 microl of 1.4 microM ouabain and from 3.1 to 4.4 mmHg after addition of 5 microl of 1.42 mM PGF2alpha (P > 0.05). In conclusion, we have developed and validated a new in vitro method for studying fluid pressure in loose connective tissue elements with the advantage of allowing reliable and rapid screening of substances that have a potential to modify Pf and studying in more detail specific cell types involved in control of Pf. This study also provides evidence that fibroblasts in the connective tissue can actively modulate Pf.

Figures
Products