1. Academic Validation
  2. Agonist activity of naloxone benzoylhydrazone at recombinant and native opioid receptors

Agonist activity of naloxone benzoylhydrazone at recombinant and native opioid receptors

  • Br J Pharmacol. 2006 Feb;147(4):360-70. doi: 10.1038/sj.bjp.0706601.
Maria C Olianas 1 Danilo Concas Pierluigi Onali
Affiliations

Affiliation

  • 1 Section of Biochemical Pharmacology, Department of Neuroscience, University of Cagliari, Monserrato, Cagliari, Italy.
Abstract

1. In the present study, we examined the pharmacological activity of the putative kappa3-opioid receptor agonist naloxone benzoylhydrazone (NalBzoH) at recombinant human opioid receptors individually expressed in Chinese hamster ovary (CHO) cells and native opioid receptors present in rat striatum. 2. At the mu-opioid receptor (MOR), NalBzoH stimulated guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding (pEC50=8.59) and inhibited cyclic AMP accumulation (pEC50=8.74) with maximal effects (Emax) corresponding to 55 and 65% of those obtained with the MOR agonist DAMGO, respectively. The MOR antagonist CTAP blocked the stimulatory effects of NalBzoH and DAMGO with similar potencies. 3. At the kappa-opioid receptor (KOR), NalBzoH stimulated [35S]GTPgammaS binding (pEC50=9.70) and inhibited cyclic AMP formation (pEC50=9.45) as effectively as the selective KOR agonist (-)-U-50,488. The NalBzoH effect was blocked by the KOR antagonist nor-binaltorphimine (nor-BNI) (pKi=10.30). 4. In CHO cells expressing the delta-opioid receptor (DOR), NalBzoH increased [35S]GTPgammaS binding (pEC50=8.49) and inhibited cyclic AMP formation (pEC50=8.61) almost as effectively as the DOR agonist DPDPE. Naltrindole (NTI), a selective DOR antagonist, completely blocked the response to NalBzoH (pKi of 10.40). 5. In CHO cells expressing the nociceptin/orphanin FQ (N/OFQ) receptor (NOP), NalBzoH failed to exert agonist effects and antagonized the agonist-induced receptor activation. 6. When compared to other Opioid Receptor ligands, NalBzoH showed an efficacy that was lower than that of morphine at MOR, but higher at KOR and DOR. 7. In rat striatum, NalBzoH enhanced [35S]GTPgammaS binding and inhibited adenylyl cyclase activity. These effects were antagonized by either CTAP, nor-BNI or NTI, each antagonist blocking a fraction of the NalBzoH response. 8. These data demonstrate that NalBzoH displays agonist activity at MOR, DOR and KOR expressed either in a heterologous cell system or in a native environment.

Figures
Products