1. Academic Validation
  2. Iron deficiency alters expression of genes implicated in Alzheimer disease pathogenesis

Iron deficiency alters expression of genes implicated in Alzheimer disease pathogenesis

  • Brain Res. 2008 Oct 27:1237:75-83. doi: 10.1016/j.brainres.2008.07.109.
Erik S Carlson 1 Rhamy Magid Anna Petryk Michael K Georgieff
Affiliations

Affiliation

  • 1 Department of Pediatrics, University of Minnesota School of Medicine, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
Abstract

Neonatal brain iron deficiency occurs after insufficient maternal dietary iron intake, maternal hypertension, and maternal diabetes mellitus and results in short and long-term neurologic and behavioral deficits. Early iron deficiency affects the genomic profile of the developing hippocampus that persists despite iron repletion. The purpose of the present study was threefold: 1) quantitative PCR confirmation of our previous microarray results, demonstrating upregulation of a network of genes leading to beta-amyloid production and implicated in Alzheimer disease etiology in iron-deficient anemic rat pups at the time of hippocampal differentiation; 2) investigation of the potential contributions of iron deficiency anemia and iron treatment to this differential gene expression in the hippocampus; and 3) investigation of these genes over a developmental time course in a mouse model where iron deficiency is limited to hippocampus, is not accompanied by anemia and is not repletable. Quantitative PCR confirmed altered regulation in 6 of 7 Alzheimer-related genes (Apbb1, C1qa, Clu, App, Cst3, Fn1, Htatip) in iron-deficient rats relative to iron-sufficient controls at P15. Comparison of untreated to treated iron-deficient Animals at this age suggested the strong role of iron deficiency, not treatment, in the upregulation of this gene network. The non-anemic hippocampal iron-deficient mouse demonstrated upregulation of all 7 genes in this pathway from P5 to P25. Our results suggest a role for neonatal iron deficiency in dysregulation of genes that may set the stage for long-term neurodegenerative disease and that this may occur through a histone modification mechanism.

Figures