1. Academic Validation
  2. An efficient combination of supercritical fluid extraction and high-speed counter-current chromatography to extract and purify homoisoflavonoids from Ophiopogon japonicus (Thunb.) Ker-Gawler

An efficient combination of supercritical fluid extraction and high-speed counter-current chromatography to extract and purify homoisoflavonoids from Ophiopogon japonicus (Thunb.) Ker-Gawler

  • J Sep Sci. 2009 Jun;32(11):1949-56. doi: 10.1002/jssc.200800732.
Chengjun Ma 1 Gang Li Juan Zhang Qiusheng Zheng Xiao Fan Zhenhua Wang
Affiliations

Affiliation

  • 1 Department of Bioengineering, College of Ocean, Yantai University, Yantai, Shandong Province, P.R. China. chengjun-ma@163.com
Abstract

Supercritical fluid extraction (SFE) was used to extract homoisoflavonoids from Ophiopogon japonicus (Thunb.) Ker-Gawler. The optimization of parameters was carried out using an orthogonal test L9 (3)(4) including pressure, temperature, dynamic extraction time and the amount of modifier. The process was then scaled up by 100 times with a preparative SFE system under the optimized conditions of 25 MPa, 55 degrees C, 4.0 h and 25% methanol as a modifier. Then crude extracts were separated and purified by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane/ethyl acetate/methanol/ACN/water (1.8:1.0:1.0:1.2:1.0 v/v). There three homoisoflavonoidal compounds including methylophiopogonanone A 6-aldehydo-isoophiopogonone A, and 6-formyl-isoophiopogonanone A, were successfully isolated and purified in one step. The collected fractions were analyzed by HPLC. In each operation, 140 mg crude extracts was separated and yielded 15.3 mg of methylophiopogonanone A (96.9% purity), 4.1 mg of 6-aldehydo-isoophiopogonone A (98.3% purity) and 13.5 mg of 6-formyl-isoophiopogonanone A (97.3% purity) respectively. The chemical structure of the three homoisoflavonoids are identified by means of ESI-MS and NMR analysis.

Figures
Products