1. Academic Validation
  2. Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567

Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567

  • Br J Pharmacol. 2013 Oct;170(3):624-40. doi: 10.1111/bph.12314.
Anindya Bhattacharya 1 Qi Wang Hong Ao James R Shoblock Brian Lord Leah Aluisio Ian Fraser Diane Nepomuceno Robert A Neff Natalie Welty Timothy W Lovenberg Pascal Bonaventure Alan D Wickenden Michael A Letavic
Affiliations

Affiliation

  • 1 Neuroscience Therapeutic Area, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA.
Abstract

Background and purpose: An increasing body of evidence suggests that the purinergic receptor P2X, ligand-gated ion channel, 7 (P2X7) in the CNS may play a key role in neuropsychiatry, neurodegeneration and chronic pain. In this study, we characterized JNJ-47965567, a centrally permeable, high-affinity, selective P2X7 antagonist.

Experimental approach: We have used a combination of in vitro assays (calcium flux, radioligand binding, electrophysiology, IL-1β release) in both recombinant and native systems. Target engagement of JNJ-47965567 was demonstrated by ex vivo receptor binding autoradiography and in vivo blockade of Bz-ATP induced IL-1β release in the rat brain. Finally, the efficacy of JNJ-47965567 was tested in standard models of depression, mania and neuropathic pain.

Key results: JNJ-47965567 is potent high affinity (pKi 7.9 ± 0.07), selective human P2X7 antagonist, with no significant observed speciation. In native systems, the potency of the compound to attenuate IL-1β release was 6.7 ± 0.07 (human blood), 7.5 ± 0.07 (human monocytes) and 7.1 ± 0.1 (rat microglia). JNJ-47965567 exhibited target engagement in rat brain, with a brain EC50 of 78 ± 19 ng·mL(-1) (P2X7 Receptor autoradiography) and functional block of Bz-ATP induced IL-1β release. JNJ-47965567 (30 mg·kg(-1) ) attenuated amphetamine-induced hyperactivity and exhibited modest, yet significant efficacy in the rat model of neuropathic pain. No efficacy was observed in forced swim test.

Conclusion and implications: JNJ-47965567 is centrally permeable, high affinity P2X7 antagonist that can be used to probe the role of central P2X7 in rodent models of CNS pathophysiology.

Keywords

P2X7; autoradiography; depression; interleukin 1β (IL-1β); mania; microdialysis; neuropathic pain; purinergic.

Figures
Products