1. Academic Validation
  2. Role of the sympathetic nervous system in blood pressure maintenance and in the antihypertensive effects of calcium antagonists in spontaneously hypertensive rats

Role of the sympathetic nervous system in blood pressure maintenance and in the antihypertensive effects of calcium antagonists in spontaneously hypertensive rats

  • Hypertension. 1988 Apr;11(4):360-70. doi: 10.1161/01.hyp.11.4.360.
F Lefèvre-Borg 1 O Mathias I Cavero
Affiliations

Affiliation

  • 1 Department of Biology, Laboratoires d'Etudes et de Recherches Synthélabo, Paris, France.
Abstract

In conscious spontaneously hypertensive rats (SHR), 2, 3, 6, 9, 12, and 16 months of age, the blockade of autonomic ganglia (with chlorisondamine) or postjunctional alpha 1-adrenergic receptors (with prazosin) or the depletion of peripheral norepinephrine stores (with syrosingopine), in contrast to the blockade of alpha 2-adrenergic receptors (with yohimbine, rauwolscine), produced a sustained decrease in the directly measured mean tail artery blood pressure. In 3- to 9-month-old SHR, the fall in blood pressure after prazosin pretreatment was significantly smaller than that after chlorisondamine or syrosingopine pretreatment. In ganglion-blocked SHR, prazosin decreased blood pressure only when this parameter had been elevated by an intra-arterial infusion of epinephrine or norepinephrine. In contrast, under the same experimental conditions, yohimbine or rauwolscine administration failed to modify the pressor effects of either phenylephrine or epinephrine but partially reduced those of norepinephrine and, unlike prazosin, strongly antagonized those of B-HT 920. In either intact or ganglion-blocked SHR, a 30-minute intra-arterial infusion of diltiazem at 100.0, but not 25.0, micrograms/kg/min significantly decreased baseline mean tail artery blood pressure. In ganglion-blocked SHR, the smaller dose of diltiazem antagonized by 40 and 80% the pressor effects of norepinephrine and B-HT 920, respectively, but failed to change the vasoconstrictor responses of phenylephrine, epinephrine, or vasopressin, which were, however, reduced by the higher dose of diltiazem. These results indicate that, in conscious adult SHR, norepinephrine released by peripheral sympathetic nervous terminals and humorally borne epinephrine stimulate almost exclusively post-junctional alpha 1-adrenergic receptors. The latter findings may account for the lack of blood pressure-lowering effects of the studied calcium antagonists at doses that effectively antagonize alpha 2-adrenergic receptor-mediated vasoconstriction in conscious SHR.

Figures
Products