1. Academic Validation
  2. N-acetyl-L-leucine accelerates vestibular compensation after unilateral labyrinthectomy by action in the cerebellum and thalamus

N-acetyl-L-leucine accelerates vestibular compensation after unilateral labyrinthectomy by action in the cerebellum and thalamus

  • PLoS One. 2015 Mar 24;10(3):e0120891. doi: 10.1371/journal.pone.0120891.
Lisa Günther 1 Roswitha Beck 1 Guoming Xiong 1 Heidrun Potschka 2 Klaus Jahn 3 Peter Bartenstein 4 Thomas Brandt 5 Mayank Dutia 6 Marianne Dieterich 3 Michael Strupp 3 Christian la Fougère 7 Andreas Zwergal 3
Affiliations

Affiliations

  • 1 German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany.
  • 2 German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany; Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany.
  • 3 German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany; Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany.
  • 4 German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany; Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany.
  • 5 German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany; Clinical Neuroscience, Ludwig-Maximilians-University of Munich, Munich, Germany.
  • 6 Center for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland.
  • 7 German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany; Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany; Department of Nuclear Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany.
Abstract

An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular behavioural testing included measurements of nystagmus, head roll tilt and postural imbalance as well as sequential whole-brain [18F]-FDG-μPET was done before and on days 1,3,7 and 15 after UL. A significant reduction of postural imbalance scores was identified on day 7 in the N-acetyl-DL-leucine (p < 0.03) and the N-acetyl-L-leucine groups (p < 0.01), compared to the sham treatment group, but not in the N-acetyl-D-leucine group (comparison for applied dose of 24 mg i.v. per rat, equivalent to 60 mg/kg body weight, in each group). The course of postural compensation in the DL- and L-group was accelerated by about 6 days relative to controls. The effect of N-acetyl-L-leucine on postural compensation depended on the dose: in contrast to 60 mg/kg, doses of 15 mg/kg and 3.75 mg/kg had no significant effect. N-acetyl-L-leucine did not change the compensation of nystagmus or head roll tilt at any dose. Measurements of the regional cerebral glucose metabolism (rCGM) by means of μPET revealed that only N-acetyl-L-leucine but not N-acetyl-D-leucine caused a significant increase of rCGM in the vestibulocerebellum and a decrease in the posterolateral thalamus and subthalamic region on days 3 and 7. A similar pattern was found when comparing the effect of N-acetyl-L-leucine on rCGM in an UL-group and a sham UL-group without vestibular damage. In conclusion, N-acetyl-L-leucine improves compensation of postural symptoms after UL in a dose-dependent and specific manner, most likely by activating the vestibulocerebellum and deactivating the posterolateral thalamus.

Figures
Products