1. Academic Validation
  2. Europium-Labeled Synthetic C3a Protein as a Novel Fluorescent Probe for Human Complement C3a Receptor

Europium-Labeled Synthetic C3a Protein as a Novel Fluorescent Probe for Human Complement C3a Receptor

  • Bioconjug Chem. 2017 Jun 21;28(6):1669-1676. doi: 10.1021/acs.bioconjchem.7b00132.
Aline Dantas de Araujo 1 Chongyang Wu 1 Kai-Chen Wu 1 Robert C Reid 1 Thomas Durek 1 Junxian Lim 1 David P Fairlie 1
Affiliations

Affiliation

  • 1 Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, and §Centre for Inflammation Disease Research, The University of Queensland , Brisbane, Queensland 4072, Australia.
Abstract

Measuring ligand affinity for a G protein-coupled receptor is often a crucial step in drug discovery. It has been traditionally determined by binding putative new ligands in competition with native ligand labeled with a radioisotope of finite lifetime. Competing instead with a lanthanide-based fluorescent ligand is more attractive due to greater longevity, stability, and safety. Here, we have chemically synthesized the 77 residue human C3a protein and conjugated its N-terminus to europium diethylenetriaminepentaacetate to produce a novel fluorescent protein (Eu-DTPA-hC3a). Time-resolved fluorescence analysis has demonstrated that Eu-DTPA-hC3a binds selectively to its cognate G protein-coupled receptor C3aR with full agonist activity and similar potency and selectivity as native C3a in inducing calcium mobilization and phosphorylation of extracellular signal-regulated kinases in HEK293 cells that stably expressed C3aR. Time-resolved fluorescence analysis for saturation and competitive binding gave a dissociation constant (Kd) of 8.7 ± 1.4 nM for Eu-DTPA-hC3a and binding affinities for hC3a (pKi of 8.6 ± 0.2 and Ki of 2.5 nM) and C3aR ligands TR16 (pKi of 6.8 ± 0.1 and Ki of 138 nM), BR103 (pKi of 6.7 ± 0.1 and Ki of 185 nM), BR111 (pKi of 6.3 ± 0.2 and Ki of 544 nM) and SB290157 (pKi of 6.3 ± 0.1 and Ki of 517 nM) via displacement of Eu-DTPA-hC3a from hC3aR. The macromolecular conjugate Eu-DTPA-hC3a is a novel nonradioactive probe suitable for studying ligand-C3aR interactions with potential value in accelerating drug development for human C3aR in physiology and disease.

Figures
Products