1. Academic Validation
  2. Design, synthesis and biological evaluation of 6-deoxy O-spiroketal C-arylglucosides as novel renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for the treatment of type 2 diabetes

Design, synthesis and biological evaluation of 6-deoxy O-spiroketal C-arylglucosides as novel renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for the treatment of type 2 diabetes

  • Eur J Med Chem. 2019 Oct 15:180:398-416. doi: 10.1016/j.ejmech.2019.07.032.
Yibing Wang 1 Yang Lou 2 Jiang Wang 1 Dan Li 2 Hui Chen 2 Tiannan Zheng 1 Chunmei Xia 2 Xiaohan Song 1 Tiancheng Dong 2 Jingya Li 1 Jia Li 3 Hong Liu 4
Affiliations

Affiliations

  • 1 State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
  • 2 State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
  • 3 State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China. Electronic address: jli@simm.ac.cn.
  • 4 State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China. Electronic address: hliu@simm.ac.cn.
Abstract

In this work, aiming at finding a novel, potent, and selective sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor with good pharmacokinetic profiles for the treatment of diabetes, we focus on modifying the sugar moiety of SGLT2 inhibitors, which dominates the binding with glucose binding site of hSGLT, via removing the C-6 hydroxy group to adjust the physicochemical properties and target-recognition manners of SGLT2 inhibitors. In addition, tofogliflozin containing a special O-spiroketal C-arylglucoside scaffold, displayed good efficacy and bioavailability both in Animals and in humans. Therefore, a series of 6-deoxy O-spiroketal C-arylglucosides as novel SGLT2 inhibitors were designed, synthesized, and evaluated in this work. The structure-activity relationship (SAR) research on this novel series and a comprehensive in vitro and in vivo biological evaluation afforded compound 39 with high in vitro hSGLT2 inhibitory activity (IC50 = 4.5 nM), good pharmacokinetic profiles, and more remarkable efficacy in C57BL/6J mice and Sprague-Dawley rats than marketed drug tofogliflozin.

Keywords

Diabetes; Oral glucose tolerance; SGLT2 inhibitors; Structure-activity relationship; Sugar modification; Urinary glucose excretion.

Figures