1. Academic Validation
  2. Loss of RDM1 enhances hepatocellular carcinoma progression via p53 and Ras/Raf/ERK pathways

Loss of RDM1 enhances hepatocellular carcinoma progression via p53 and Ras/Raf/ERK pathways

  • Mol Oncol. 2020 Feb;14(2):373-386. doi: 10.1002/1878-0261.12593.
Shi-Lu Chen 1 2 Li-Li Liu 1 2 Chun-Hua Wang 1 2 Shi-Xun Lu 1 2 Xia Yang 1 2 Yang-Fan He 1 2 Chris Zhiyi Zhang 3 Jing-Ping Yun 1 2
Affiliations

Affiliations

  • 1 State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
  • 2 Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
  • 3 Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
Abstract

Hepatocellular carcinoma (HCC), with its ineffective therapeutic options and poor prognosis, represents a global threat. In the present study, we show that RAD52 motif 1 (RDM1), a key regulator of DNA double-strand break repair and recombination, is downregulated in HCC tissues and suppresses tumor growth. In clinical HCC samples, low expression of RDM1 correlates with larger tumor size, poor tumor differentiation, and unfavorable survival. In vitro and in vivo data demonstrate that knockdown of RDM1 increases HCC cell proliferation, colony formation, and cell population at G2/M phase, whereas RDM1 overexpression results in the opposite phenotypes. Mechanistically, RDM1 binds to the tumor suppressor p53 and enhances its protein stability. In the presence of p53, RDM1 suppresses the phosphorylation of Raf and ERK. Overexpression of p53 or treatment with ERK Inhibitor significantly abolishes cell proliferation induced by the depletion of RDM1. In addition, overexpression of methyltransferase-like 3 markedly induces N6-methyladenosine modification of RDM1 mRNA and represses its expression. Taken together, our study indicates that RDM1 functions as a tumor suppressor and may be a potential prognostic and therapeutic factor for HCC.

Keywords

METTL3; RDM1; RNA methylation; hepatocellular carcinoma; p53.

Figures
Products