1. Academic Validation
  2. FAK activates AKT-mTOR signaling to promote the growth and progression of MMTV-Wnt1-driven basal-like mammary tumors

FAK activates AKT-mTOR signaling to promote the growth and progression of MMTV-Wnt1-driven basal-like mammary tumors

  • Breast Cancer Res. 2020 Jun 3;22(1):59. doi: 10.1186/s13058-020-01298-3.
Ritama Paul 1 Ming Luo 2 Xueying Mo 3 Jason Lu 3 Syn Kok Yeo 4 Jun-Lin Guan 5
Affiliations

Affiliations

  • 1 Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
  • 2 Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
  • 3 Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, 45229, USA.
  • 4 Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA. yeosn@ucmail.uc.edu.
  • 5 Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA. guanjl@uc.edu.
Abstract

Background: Breast Cancer is a heterogeneous disease. Hence, stratification of patients based on the subtype of breast Cancer is key to its successful treatment. Among all the breast Cancer subtypes, basal-like breast Cancer is the most aggressive subtype with limited treatment options. Interestingly, we found focal adhesion kinase (FAK), a cytoplasmic tyrosine kinase, is highly overexpressed and activated in basal-like breast Cancer.

Methods: To understand the role of FAK in this subtype, we generated mice with conditional deletion of FAK and a knock-in mutation in its kinase domain in MMTV-Wnt1-driven basal-like mammary tumors. Tumor initiation, growth, and metastasis were characterized for these mice cohorts. Immunohistochemical and transcriptomic analysis of Wnt1-driven tumors were also performed to elucidate the mechanisms underlying FAK-dependent phenotypes. Pharmacological inhibition of FAK and mTOR in human basal-like breast Cancer cell lines was also tested.

Results: We found that in the absence of FAK or its kinase function, growth and metastasis of the tumors were significantly suppressed. Furthermore, immunohistochemical analyses of cleaved Caspase 3 revealed that loss of FAK results in increased tumor cell Apoptosis. To further investigate the mechanism by which FAK regulates survival of the Wnt1-driven tumor cells, we prepared an isogenic pair of mammary tumor cells with and without FAK and found that FAK ablation increased their sensitivity to ER stress-induced cell death, as well as reduced tumor cell migration and tumor sphere formation. Comparative transcriptomic profiling of the pair of tumor cells and gene set enrichment analysis suggested mTOR pathway to be downregulated upon loss of FAK. Immunoblot analyses further confirmed that absence of FAK results in reduction of Akt and downstream mTOR pathways. We also found that inhibition of FAK and mTOR pathways both induces Apoptosis, indicating the importance of these pathways in regulating cell survival.

Conclusions: In summary, our studies show that in a basal-like tumor model, FAK is required for survival of the tumor cells and can serve as a potential therapeutic target.

Keywords

Basal-like breast cancer; FAK; WNT1; mTOR.

Figures
Products