1. Academic Validation
  2. Heteroantigen-assembled nanovaccine enhances the polyfunctionality of TILs against tumor growth and metastasis

Heteroantigen-assembled nanovaccine enhances the polyfunctionality of TILs against tumor growth and metastasis

  • Biomaterials. 2023 Aug 29;302:122297. doi: 10.1016/j.biomaterials.2023.122297.
Liangnian Wei 1 Ye Zhang 2 Ruixin Wang 2 Shuai Liu 3 Jia Luo 2 Yunfei Ma 2 Hao Wang 4 Ye Liu 5 Yun Chen 6
Affiliations

Affiliations

  • 1 Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China; State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University; Nanjing 211166, China; Department of Immunology, Key Laboratory of Immunological Environment and Disease, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, Nanjing Medical University; Nanjing 211166, China; Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Central Laboratory, The Affiliated Huai'an N0.1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China.
  • 2 Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China.
  • 3 State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University; Nanjing 211166, China; Department of Immunology, Key Laboratory of Immunological Environment and Disease, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, Nanjing Medical University; Nanjing 211166, China; Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Central Laboratory, The Affiliated Huai'an N0.1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China.
  • 4 CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China. Electronic address: wanghao@nanoctr.cn.
  • 5 Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, 100190, China; Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, 100190, China. Electronic address: liuye@imbcams.com.cn.
  • 6 State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University; Nanjing 211166, China; Department of Immunology, Key Laboratory of Immunological Environment and Disease, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, Nanjing Medical University; Nanjing 211166, China; Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Central Laboratory, The Affiliated Huai'an N0.1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China. Electronic address: chenyun@njmu.edu.cn.
Abstract

The dysfunction of tumor infiltrating lymphocytes (TILs) directly correlates with out of control of tumor growth and metastasis. New approaches and insightful clarity for rescuing TILs dysfunction are urgently needed. Here, we design two heterogenous antigens based on MHC-I epitope and MHC-II epitope from tumor, and assemble heterogenous antigens by electrostatic interactions and π-π stacking into heteroantigen-assembled nanovaccine (HANV). HANV not only significantly increases the abundance of CD8+ and CD4+ TILs, but also elicits stronger polyfunctionality of CD8+ and CD4+ TILs in vivo. Enhanced polyfunctionality of CD8+ and CD4+ TILs positively correlate to suppression of tumor growth and metastasis in melanoma-bearing mouse models. We also validate that nucleotide-binding oligomerization domain-containing protein 2 (NOD2) dominantly enhances anti-tumor capacity of TILs in a temporal immunoregulation manner. This work presents a new insight in developing HANV as a rational strategy to shape TILs polyfunctionality for tumor growth and metastasis.

Keywords

Assembly; Heteroantigen; Polyfunction; TIL; Tumor Growth and Metastasis; Tumor vaccine.

Figures
Products