1. Academic Validation
  2. CDK9 inhibition activates innate immune response through viral mimicry

CDK9 inhibition activates innate immune response through viral mimicry

  • FASEB J. 2024 Apr 30;38(8):e23628. doi: 10.1096/fj.202302375R.
Shivani Yalala 1 Aishwarya Gondane 1 Ninu Poulose 2 Jing Liang 1 Ian G Mills 2 Harri M Itkonen 1
Affiliations

Affiliations

  • 1 Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
  • 2 Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
Abstract

Cancer cells frequently exhibit hyperactivation of transcription, which can lead to increased sensitivity to compounds targeting the transcriptional kinases, in particular CDK9. However, mechanistic details of CDK9 inhibition-induced Cancer cell-selective anti-proliferative effects remain largely unknown. Here, we discover that CDK9 inhibition activates the innate immune response through viral mimicry in Cancer cells. In MYC over-expressing prostate Cancer cells, CDK9 inhibition leads to the gross accumulation of mis-spliced RNA. Double-stranded RNA (dsRNA)-activated kinase can recognize these mis-spliced RNAs, and we show that the activity of this kinase is required for the CDK9 inhibitor-induced anti-proliferative effects. Using time-resolved transcriptional profiling (SLAM-seq), targeted proteomics, and ChIP-seq, we show that, similar to viral Infection, CDK9 inhibition significantly suppresses transcription of most genes but allows selective transcription and translation of cytokines related to the innate immune response. In particular, CDK9 inhibition activates NFκB-driven cytokine signaling at the transcriptional and secretome levels. The transcriptional signature induced by CDK9 inhibition identifies prostate cancers with a high level of genome instability. We propose that it is possible to induce similar effects in patients using CDK9 inhibition, which, we show, causes DNA damage in vitro. In the future, it is important to establish whether CDK9 inhibitors can potentiate the effects of immunotherapy against late-stage prostate Cancer, a currently lethal disease.

Keywords

SLAM‐seq; cyclin‐dependent kinase 9; cytokines; innate immune response; prostate cancer; splicing.

Figures
Products