1. Academic Validation
  2. Sodium Houttuyfonate Ameliorates DSS-induced Colitis Aggravated by Candida albicans through Dectin-1/NF-κB/miR-32-5p/NFKBIZ Axis Based on Intestinal microRNA Profiling

Sodium Houttuyfonate Ameliorates DSS-induced Colitis Aggravated by Candida albicans through Dectin-1/NF-κB/miR-32-5p/NFKBIZ Axis Based on Intestinal microRNA Profiling

  • Inflammation. 2024 Jul 4. doi: 10.1007/s10753-024-02091-6.
Chen Xu # 1 Liu Yang # 1 Ting Cheng # 1 Zixu Wang 1 Chengcheng Liu 1 Jing Shao 2 3
Affiliations

Affiliations

  • 1 Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China.
  • 2 Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China. ustcnjnusjtu@126.com.
  • 3 Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China. ustcnjnusjtu@126.com.
  • # Contributed equally.
Abstract

Our previous research indicated that Sodium houttuyfonate (SH) can effectively ameliorate dextran sulfate sodium (DSS)-induced colitis exacerbated by Candida albicans. However, the underlying protective mechanism of SH remains unclear. Therefore, in this study, a mice colitis model was infected with C. albicans, and the total colonic miRNAs were assessed. Furthermore, the differentially expressed miRNAs were enriched, clustered, and analyzed. Moreover, based on the dual luciferase analysis of NFKBIZ modulation by miR-32-5p, the in vitro and in vivo therapeutic effects of SH on inflammatory response, Fungal burden, oxidative stress, and Apoptosis were assessed at transcriptional and translational levels in the presence of agonist and antagonist. A total of 1157 miRNAs were identified, 84 of which were differentially expressed. Furthermore, qRT-PCR validated that SH treatment improved 17 differentially expressed miRNAs with > fourfold upregulation or > sixfold downregulation. Similar to most differentially altered miRNA, C. albicans significantly increased Dectin-1, NF-κB, TNF-α, IL-1β, IL-17A, and decreased miR-32-5p which negatively targeted NFKBIZ. In addition, SH treatment reduced inflammatory response and Fungal burden in a colitis model with C. albicans Infection. Further analyses indicated that in C. albicans infected Caco2 cells, SH inhibited Fungal growth, oxidative stress, and Apoptosis by increasing Dectin-1, NF-κB, NFKBIZ, TNF-α, IL-1β, IL-17A, and decreasing miR-32-5p. Therefore, SH can ameliorate the severity of colitis aggravated by C. albicans via the Dectin-1/NF-κB/miR-32-5p/NFKBIZ axis.

Keywords

Candida albicans; Colitis; Dectin-1; NFKBIZ; Sodium houttuyfonate; miR-32-5p.

Figures
Products