1. Academic Validation
  2. Sevoflurane-induced regulation of NKCC1/KCC2 phosphorylation through activation of Spak/OSR1 kinase and cognitive impairment in ischemia-reperfusion injury in rats

Sevoflurane-induced regulation of NKCC1/KCC2 phosphorylation through activation of Spak/OSR1 kinase and cognitive impairment in ischemia-reperfusion injury in rats

  • Heliyon. 2024 Jun 13;10(12):e32481. doi: 10.1016/j.heliyon.2024.e32481.
Yuefeng Wang 1 Yuanyu Zhang 2 Wei Yu 1 Mengjuan Dong 1 Pingping Cheng 1 Ye Wang 1
Affiliations

Affiliations

  • 1 Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China.
  • 2 Department of Health Manageent Center, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China.
Abstract

The occurrence of excitotoxic damage caused by cerebral ischemia-reperfusion (I/R) injury is closely linked to a decrease in central inhibitory function, in which the concentration of chloride inside the cells ([Cl-]i) plays a crucial role. The outflow and inflow of [Cl-]i are controlled by KCC2 and NKCC1, which are cellular cotransporters for K+/Cl- and Na+/K+/Cl-, respectively. NKCC1/KCC2 is regulated by upstream regulators such as SPAK and OSR1, whose activity is influenced by I/R. Sevoflurane is the most commonly used and controversial general anesthetic. To elucidate the impact of sevoflurane on cerebral ischemia-reperfusion (I/R) injury and its underlying mechanism, we investigated its influence on cognitive function and the mechanism of action utilizing a rat model of I/R. By activating the kinase Spak/OSR1, we discovered that I/R damage enhanced the function of NKCC1 and inhibited the function of KCC2, which triggered an imbalance of [Cl-]i concentration, leading to neurological dysfunction and cognitive dysfunction. At the beginning of reperfusion, administration of 1.3 MAC sevoflurane for 3 h increased activation of Spak/OSR1 kinases on day 7 post-perfusion, resulting in an additional dysregulation of NKCC1 and KCC2 activity, which disappeared on day 14. Administration of Closantel, a Spak/OSR1 kinase inhibitor, to Animals treated with sevoflurane reverses the additional stimulation. The research revealed that sevoflurane modified the functioning of NKCC1 and KCC2, resulting in cognitive decline by activating Spak/OSR1 kinase. However, this issue could be resolved by inhibiting Spak/OSR1. The research revealed that sevoflurane transiently alters the function of NKCC1 and KCC2, resulting in exacerbating cognitive decline. However, this can be fixed by suppressing Spak/OSR1.

Keywords

Ischemia-reperfusion (I/R); NKCC1/KCC2; Rats; Sevoflurane; Spak/OSR1.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-D0090
    99.84%, 荧光氯离子指示剂
我们的 Cookie 政策

我们使用 Cookies 和类似技术以提高网站的性能和提升您的浏览体验,部分功能也使用 Cookies 帮助我们更好地理解您的需求,为您提供相关的服务。 如果您有任何关于我们如何处理您个人信息的疑问,请阅读我们的《隐私声明》