1. Academic Validation
  2. APOE4 exacerbates glucocorticoid stress hormone-induced tau pathology via mitochondrial dysfunction

APOE4 exacerbates glucocorticoid stress hormone-induced tau pathology via mitochondrial dysfunction

  • bioRxiv. 2025 Feb 5:2025.02.03.636364. doi: 10.1101/2025.02.03.636364.
Qing Yu Fang Du Jeffrey Goodman Clarissa L Waites
Abstract

APOE4 is the leading genetic risk factor for Alzheimer's disease, and chronic stress is a leading environmental risk factor. Studies suggest that APOE4 confers vulnerability to the behavioral and neuropathological effects of chronic stress, representing a potential mechanism by which this genetic variant accelerates Alzheimer's onset and progression. Whether and how APOE4 -mediated stress vulnerability manifests in neurons of the hippocampus, a brain region particularly susceptible to stress and Alzheimer's pathology, remains unexplored. Using a combination of in vivo and in vitro experiments in humanized APOE4 and APOE3 knockin mice and primary hippocampal neurons from these Animals, we investigate whether and how APOE4 confers sensitivity to glucocorticoids, the main stress Hormones. We find that a major hallmark of stress/glucocorticoid-induced brain damage, tau pathology (i.e., tau accumulation, hyperphosphorylation, and spreading) is exacerbated in APOE4 versus APOE3 mice. Moreover, APOE4 Animals exhibit underlying mitochondrial dysfunction and enhanced Glucocorticoid Receptor activation in the hippocampus, factors that likely contribute to tau pathogenesis in both the presence and absence of stress/glucocorticoids. Supporting this concept, we show that opening of the mitochondrial permeability transition pore drives mitochondrial dysfunction and tau pathology in APOE4 mice, and that pharmacological inhibition of pore opening is protective against ApoE4-mediated mitochondrial damage, tau phosphorylation and spreading, and downstream hippocampal synapse loss. These findings shed light on the mechanisms of stress vulnerability in APOE4 carriers and identify the mitochondrial permeability transition pore as a potential therapeutic target for ameliorating Alzheimer's pathogenesis in this population.

Figures
Products
我们的 Cookie 政策

我们使用 Cookies 和类似技术以提高网站的性能和提升您的浏览体验,部分功能也使用 Cookies 帮助我们更好地理解您的需求,为您提供相关的服务。 如果您有任何关于我们如何处理您个人信息的疑问,请阅读我们的《隐私声明》