1. Academic Validation
  2. Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media

Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media

  • Plant Cell. 1994 Dec;6(12):1815-28. doi: 10.1105/tpc.6.12.1815.
E S Pierson 1 D D Miller D A Callaham A M Shipley B A Rivers M Cresti P K Hepler
Affiliations

Affiliation

  • 1 Department of Biology, Morrill Science Center III, University of Massachusetts, Amherst 01003.
Abstract

Lily pollen tubes possess a steep, tip-focused intracellular Ca2+ gradient and a tip-directed extracellular Ca2+ influx. Ratiometric ion imaging revealed that the gradient extends from above 3.0 microM at the apex to approximately 0.2 microM within 20 microns from the tip, while application of the CA(2+)-specific vibrating electrode indicated that the extracellular influx measured between 1.4 and 14 pmol cm-2 sec-1. We examined the relationship between these phenomena and their role in tube growth by using different 1,2-bis(o-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA)-type buffers and hypertonic media. Injection of active BAPTA-type buffers or application of elevated levels of sucrose reversibly inhibited growth, destroyed tip zonation of organelles, and modified normal patterns of cytoplasmic streaming. Simultaneously, these treatments dissipated both the intracellular tip-focused gradient and the extracellular Ca2+ flux. Of the BAPTA-type buffers, 5,5'-dibromo-BAPTA (dissociation constant [Kd] is 1.5 microM) and 4,4'-difluoro-BAPTA (Kd of 1.7 microM) exhibited greater activity than those buffers with either a higher affinity (5,5'-dimethyl-BAPTA, Kd of 0.15 microM; BAPTA, Kd of 0.21 microM; 5,5'-difluoro-BAPTA, Kd of 0.25 microM) or lower affinity (5-methyl, 5'-nitro-BAPTA, Kd of 22 microM) for Ca2+. Our findings provide evidence that growing pollen tubes have open Ca2+ channels in their tip and that these channels become inactivated in nongrowing tubes. The studies with elevated sucrose support the view that stretching of the apical plasma membrane contributes to the maintenance of the Ca2+ signal.

Figures
Products