1. Academic Validation
  2. Immunization of patients with melanoma peptide vaccines: immunologic assessment using the ELISPOT assay

Immunization of patients with melanoma peptide vaccines: immunologic assessment using the ELISPOT assay

  • Cancer J Sci Am. 1998 Sep-Oct;4(5):316-23.
H A Pass 1 S L Schwarz J R Wunderlich S A Rosenberg
Affiliations

Affiliation

  • 1 Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
PMID: 9815296
Abstract

Purpose: Interest in the development of antimelanoma peptide vaccines has been renewed by the identification of specific epitopes recognized by tumor-infiltrating lymphocytes that mediate tumor regression after adoptive transfer. The human leukocyte antigen (HLA)-A2*0201-restricted, nonmutated melanocyte differentiation antigen gp100 has multiple T-cell epitopes, of which three are recognized by most gp100-reactive tumor infiltrating lymphocytes. Synthetic Peptides based on two of these epitopes, or modifications to improve HLA binding affinity, were used individually to vaccinate patients with metastatic melanoma. The purpose of this study was to evaluate the success of the vaccinations, as determined by the results of enzyme-linked immunospot (ELISPOT) tests of individual immune cells.

Patients and methods: The ELISPOT assay was used to measure the immunologic reactivity of peripheral blood lymphocytes from patients with metastatic melanoma before and after vaccination with gp100 Peptides mixed with incomplete Freund's Adjuvant. The Peptides were g209 (ITDQVPFSV), g280 (YLEPGPVTA), modified g209 (g209-2M: IMDQVPFSV) or modified g280 (g280-9V: YLEPGPVTV) peptide. The patients' lymphocytes were tested by use of an ELISPOT assay for their ability to secrete interferon gamma with and without 12 days of in vitro sensitization with peptide.

Results: Patients were successfully vaccinated by gp100 Peptides, as judged by the ELISPOT assays. Restimulation of the patients' lymphocytes in vitro with peptide for 12 days before the ELISPOT assay significantly amplified the immune activity. Increased immune activity after vaccination was specific for the immunizing peptide or its altered form, was major histocompatibility complex restricted, and was apparent against HLA-A2+, gp100+ melanoma cell lines and against T2 cells pulsed with the appropriate synthetic Peptides. In general, the frequency of immune T cells was 10 to 100-fold higher in ELISPOT assays against peptide-pulsed T2 cells than against melanoma cell lines. Judged by the ELISPOT assays, vaccination was successful in six of seven patients injected with g209-2M when tested against g209-2M peptide and in five of these seven patients when tested against the native g209 peptide. Vaccination was also successful in five of six patients injected with g209, one of three patients injected with g280-9V, and four of seven patients injected with g280. Even without peptide restimulation in vitro before the ELISPOT assay, the frequency of immune T cells among fresh peripheral blood mononuclear cells tested 3 weeks after a second vaccination with g209-2M peptide was elevated in four of six patients and was about 1/1000 of cells tested against the same peptide pulsed onto T2 cells.

Discussion: Gp100 Peptides were selected for vaccine development because they are epitopes recognized by tumor-infiltrating lymphocytes that are associated with tumor regression after adoptive immunotherapy in patients with metastatic melanoma. In the present study, most of the patients vaccinated with the gp209-2M peptide in incomplete Freund's Adjuvant generated circulating antigen-specific immune T cells that could be detected by restimulation in vitro followed by an ELISPOT assay for individual cells secreting interferon gamma. The immune T cells reacted not only with the HLA-A2 restricted modified peptide but also with the native peptide and with melanoma cells that express gp100 and HLA-A2. Analysis of T-cell responses at the single cell level will be a valuable aid in assessing the effectiveness of melanoma vaccines and in determining optimal vaccine formulations and delivery.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-P1794
    99.23%