1. Academic Validation
  2. Effects of benfluorex on fatty acid and glucose metabolism in isolated rat hepatocytes: from metabolic fluxes to gene expression

Effects of benfluorex on fatty acid and glucose metabolism in isolated rat hepatocytes: from metabolic fluxes to gene expression

  • Diabetes. 2002 Aug;51(8):2363-8. doi: 10.2337/diabetes.51.8.2363.
Claude Kohl 1 Denis Ravel Jean Girard Jean-Paul Pégorier
Affiliations

Affiliation

  • 1 Endocrinologie et Métabolisme, Institut Cochin, INSERM U567, Paris, France.
Abstract

The effects of benfluorex and two of its metabolites (S 422-1 and S 1475-1) on fatty acid and glucose metabolic fluxes and specific gene expression were studied in hepatocytes isolated from 24-h fasted rats. Both benfluorex and S 422-1 (0.1 or 1 mmol/l) reduced beta-oxidation rates and ketogenesis, whereas S 1475-1 had no effect. At the same concentration, benfluorex and S 422-1 were more efficient in reducing gluconeogenesis from lactate/pyruvate than S 1475-1. Benfluorex inhibited gluconeogenesis at the level of pyruvate carboxylase (45% fall in acetyl-CoA concentration) and of glyceraldehyde-3-phosphate dehydrogenase (decrease in ATP/ADP and NAD(+)/NADH ratios). Accordingly, neither benfluorex nor S 422-1 inhibited gluconeogenesis from dihydroxyacetone, but both stimulated gluconeogenesis from glycerol. In hepatocytes cultured in the presence of benfluorex or S 422-1 (10 or 100 micromol/l), the expression of genes encoding Enzymes of fatty acid oxidation (carnitine palmitoyltransferase [CPT] I), ketogenesis (hydroxymethylglutaryl-CoA synthase), and gluconeogenesis (glucose-6-phosphatase, PEPCK) was decreased, whereas mRNAs encoding Glucokinase and Pyruvate Kinase were increased. By contrast, Glut-2, acyl-CoA synthetase, and CPT II gene expression was not affected by benfluorex or S 422-1. In conclusion, this work suggests that benfluorex mainly via S 422-1 reduces gluconeogenesis by affecting gene expression and metabolic status of hepatocytes.

Figures
Products